• Title/Summary/Keyword: solar-power plants

Search Result 136, Processing Time 0.018 seconds

Solar Flux Calculation for Heat Transfer Modeling of Volumetric Receivers (체적식 흡수기의 열전달 모델링을 위한 태양 열유속 계산)

  • Lee, Hyun-Jin;Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.223-228
    • /
    • 2011
  • The volumetric solar receiver is a key element of solar power plants using air. The solar flux distribution inside the receiver should be a priori known for its heat transfer modeling. Previous works have not considered characteristics of the solar flux although they change with radiative properties of receiver materials and receiver geometries. A numerical method, which is based on the Monte Carlo ray-tracing method, was developed in the current work. The solar flux distributions inside multi-channeled volumetric solar receivers were calculated when light is concentrated at the KIER solar furnace. It turned out that 99 percentage of the concentrated solar energy is absorbed within 15 mm charmel length for the charmel radius smaller than 1.5 mm. If the concentrated light is assumed to be diffuse, the absorbed solar energy at the charmel entrance region is overpredicted while the light penetrates more deeply into the charmel. The developed method will help understand the solar flux when only a part of concentrated light is of interest. Furthermore, if the presented results are applied for heat transfer modeling of multi-channeled volumetric solar receivers, one could examine effects of receiver charmel properties and shape on air temperature profiles.

  • PDF

Feasibility Assessment of Small Hydro Power Plants Using Diversion Weirs for Agricultural Purpose (농업용 보를 이용한 소수력발전소의 타당성 분석)

  • Lee, Chul-Hyung;Park, Wan-Soon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.229-234
    • /
    • 2011
  • Feasibility assessment for small hydropower plants using diversion weirs located in stream for agricultural purpose has been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the inflow caused from rainfall. And another model to predict hydrologic performance for small hydropower plants is established. Preliminary survey was performed identifying several candidate sites, and two sites were selected finally for actual site reconnaissance. During the course of site survey, generating capacity, construction and equipment cost, and payback through life time of each sites were calculated for economical feasibility analysis. The results of this study have estimated that the small hydropower plants using diversion weirs for agricultural purpose may offer better opportunities in future with increasing fuel cost and nation's energy policy.

  • PDF

Study on OTEC for the Production of Electric Power and Desalinated Water (전력 및 담수생산을 위한 해양온도차발전에 대한 연구)

  • Park, Sung-Seek;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.124-130
    • /
    • 2010
  • Ocean Thermal Energy Conversion(OTEC) power plants have been examined as a viable option for supplying clean energy. This paper evaluated the thermodynamic performance of the OTEC Power system for the production of electric power and desalinated water. The results show that newly developed fluids such as R32, R125, R143a, and R410A that do not cause stratospheric ozone layer depletion perform as well as R22 and ammonia. Overall cycle efficiency of open cycle is the lowest value of 3.01% because about 10% of the gross power is used for pumping out non-condensable gas. Also, the hybrid cycle is an attempt to combine the best features and avoid the worst features of the open and closed cycles. The overall cycle efficiency of hybrid cycle is 3.44% and the amount of desalinated water is 0.0619 kg/s.

Novel Control of a Modular Multilevel Converter for Photovoltaic Applications

  • Shadlu, Milad Samady
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.103-110
    • /
    • 2017
  • The number of applications of solar photovoltaic (PV) systems in power generation grids has increased in the last decade because of their ability to generate efficient and reliable power in a variety of low installation in domestic applications. Various PV converter topologies have therefore emerged, among which the modular multilevel converter (MMC) is very attractive due to its modularity and transformerless features. The modeling and control of the MMC has become an interesting issue due to the extremely large expansion of PV power plants at the residential scale and due to the power quality requirement of this application. This paper proposes a novel control method of MMC which is used to directly integrate the photovoltaic arrays with the power grid. Traditionally, a closed loop control has been used, although circulating current control and capacitors voltage balancing in each individual leg have remained unsolved problem. In this paper, the integration of model predictive control (MPC) and traditional closed loop control is proposed to control the MMC structure in a PV grid tied mode. Simulation results demonstrate the efficiency and effectiveness of the proposed control model.

Case Study : Assessment of Small Hydropower Potential Using Runoff Measurements (관측 유량 자료를 이용한 소수력 잠재량 평가에 대한 사례연구)

  • Jung, Sung-Eun;Kim, Jin-Young;Kang, Yong-Heack;Kim, Hung-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.4
    • /
    • pp.43-54
    • /
    • 2018
  • In this study, we assessed dependency of small hydropower potentials on the two different runoff such as the estimated runoff based on the rainfall amounts and measured runoff. The hydpropower potentials were evaluated using actural power generations taken from Deoksong, Hanseok, and Socheon small hydropower plants over Han and Nakdong river basins, respectively. As a result of comparing the actual power generation amount with the potential amount based on the rainfall amount and the estimated amount based on the observed flow amount by each small hydroelectric power plant, the degree of latent small hydro energy by the observed flow was confirmed to be high. It is confirmed that the potential hydroelectric power generation rate is estimated to be about average 30%Point higher than the actual generation amount as a result of the measured flow rate rather than using the rainfall amount. Based on this, a method for improving the degree of the actual generation amount is proposed.

A Study on Decision-making of Equipment Procurement for Plant Operations & Maintenance (O&M) - Focused on Technology Strategy perspective - (플랜트 O&M을 위한 기자재 조달방식 의사결정에 관한 연구 - 기술전략 관점을 중심으로 -)

  • Hong, Daegeun;Lim, Yongtaek
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.15 no.1
    • /
    • pp.25-33
    • /
    • 2019
  • In the plant industry, the share of equipment accounts for 45 ~ 75%, which is very high. It is a traditional plant centered on processes and reactions like petroleum and chemical plants. Renewable energy generation plants such as wind power generation and solar power generation are equipment-centric plants. Equipment-centric plants are very important not only in the EPC phase but also in the operation and management phase. The procurement of equipment for plant operation and management can be divided into make and buy. Make is a method of producing equipment itself, and buy is a method of procuring equipment from the outside. The procurement method of the equipment directly affects the plant operation and management cost. In this study, the decision making of equipment procurement method for plant operation and management is defined as 4 phase. Each phase is selection of procurement decision-making objects, technology strategy perspective, finance perspective, and production perspective. In detail, we defined selection process of procurement decision-making objects and technology strategy perspective process. We will contribute to the enhancement of the competitiveness of the plant operation and management area by carrying out researches on the process and application examples of financial and production perspectives in the future.

The comparison of the economic feasibility of small scale decentralized power supply systems in Korea (국내 주택용 전기사용자의 분산전원 설치 경제성 비교)

  • Han, Youri;Kim, Kilsin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.139.2-139.2
    • /
    • 2011
  • Compared with a traditional power system of electricity providers, distributed power systems consist of power suppliers which are small and demand-oriented. Each small power supplier tends to utilizes renewable energy sources such as solar and wind power. It is because that home renewable energy systems do not need a large scale infrastructure which is required for traditional power plants. In this work we study an economic feasibility of such a renewable energy source. We describe how renewable power generation works and what it brings in terms of economic benefits. Also, we analyze limitations by the current policy and their possible solutions.

  • PDF

Test of Fault Detection to Solar-Light Module Using UAV Based Thermal Infrared Camera (UAV 기반 열적외선 카메라를 이용한 태양광 모듈 고장진단 실험)

  • LEE, Geun-Sang;LEE, Jong-Jo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.106-117
    • /
    • 2016
  • Recently, solar power plants have spread widely as part of the transition to greater environmental protection and renewable energy. Therefore, regular solar plant inspection is necessary to efficiently manage solar-light modules. This study implemented a test that can detect solar-light module faults using an UAV based thermal infrared camera and GIS spatial analysis. First, images were taken using fixed UAV and an RGB camera, then orthomosaic images were created using Pix4D SW. We constructed solar-light module layers from the orthomosaic images and inputted the module layer code. Rubber covers were installed in the solar-light module to detect solar-light module faults. The mean temperature of each solar-light module can be calculated using the Zonalmean function based on temperature information from the UAV thermal camera and solar-light module layer. Finally, locations of solar-light modules of more than $37^{\circ}C$ and those with rubber covers can be extracted automatically using GIS spatial analysis and analyzed specifically using the solar-light module's identifying code.

The Study of Optimized Combustion Tuning Method for Fossil Power Plant (발전용 보일러의 최적연소조정기법에 대한 실험적 연구)

  • Jung, Jae-Jin;Song, Jung-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.45-52
    • /
    • 2009
  • Fossil power plants firing lower grade coals or equipped with modified system for $NO_x$ controls are challenged with maintaining good combustion conditions while maximizing generation and minimizing emissions. In many cases significant derate, availability losses and increase in unburned carbon levels can be attributed to poor combustion conditions as a result of poorly controlled local fuel and air distribution within the boiler furnace. In order to develop a on-line combustion tuning system, field test was conducted at operating power boiler. During the field test the exhaust gases' $O_2,\;NO_x$ and CO was monitored by using a spatially distributed monitoring grid located in the boiler's high temperature vestibule and upper convective rear pass region. At these locations, the flue gas flow is still significantly stratified, and air in-leakage is minimal which enables tracing of poor combustion zones to specific burners and over-fire air ports. using these monitored information we can improving combustion at every point within the furnace, therefore the boiler can operate at reduced excess $O_2$ and gas temperature deviation, reduced furnace exit gas temperature levels while also reducing localized hot spots, corrosive gas conditions, slag or clinker formation and UBC. Benefits include improving efficiency, reducing $NO_x$ emissions, increasing output and maximizing availability. Discussion concerning the reduction of greenhouse gases is prevalent in the world. When taking a practical approach to addressing this problem, the best way and short-term solution to reduce greenhouse gases on coal-fired power plants is to improve efficiency. From this point of view the real time optimized combustion tuning approach is the most effective and implemented with minimal cost.

A Study of Closed OTEC Power Plants (폐쇄형 해양온도차발전 사이클에 관한 연구)

  • Shin, Sang-Ho;Jung, Dong-Soo;Kim, Chong-Bo;Seo, Tae-Beom;Chun, Won-Gee;Auh, P. Chung-Moo
    • Solar Energy
    • /
    • v.17 no.4
    • /
    • pp.23-33
    • /
    • 1997
  • In this paper, performance of various working fluids is evaluated for the closed Ocean Thermal Energy Conversion(OTEC) power plant operating on Rankine cycle. The evaporator and condenser are modeled via UA and LMTD method while turbine and pump are modeled by specifying isentropic efficiencies. R22, Propane, Propylene, R134a, R125, R143a, R32, R410A and Ammonia are used as working fluids. Results show that newly developed fluids such as R410A and R32 that do not cause stratospheric ozone layer depletion perform as well as R22 and ammonia. The superheat at the evaporator exit and subcooling at the condenser exit do not affect the performance of the simple OTEC power cycle. Turbine efficiency and heat exchanger size influence greatly the performance of the Rankine cycle. Finally, it was shown that closed OTEC power plants can practically generate electricity when the difference in warm and cold sea water inlet temperatures is greater than $20^{\circ}C$.

  • PDF