• 제목/요약/키워드: solar-power plants

Search Result 136, Processing Time 0.029 seconds

A study on improving the surface structure of solar cell and increasing the light absorbing efficiency - Applying the structure of leaves' surface - (태양전지 텍스처 표면구조 개선 및 빛 흡수효율 향상에 관한 연구 - 식물 잎의 표면구조 적용 -)

  • Kim, Taemin;Hong, Joopyo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.38.2-38.2
    • /
    • 2010
  • Biomimetc is a new domain of learning that proposes a solution getting clues from nature. There seems to be a sign of this phenomenon in fields of Renewable Energy. Foe example, Wind power was imitate the whale's fin that was improve efficiency of generating energy. This study focused on the photovoltaic generation as the instance of applying biomimetic. Efficiency is the most important factor in field of Photovoltaic generation. When given solar cell taking the sun light, most important fields of the study are absorb more light and increase the quantity of generation. For improving efficiency, the solar cell were builded up textures of taking a pyramid form, such a surface structure taking a role for remaining the light. This effects do the role as increasing absorbing efficiency. Such phenomenon calls Light Trapping, locking up the light on the surface of solar cell for a long time. Light is a vital factor to plants in the nature. Plants grow up through the photosynthesis that absorbing light for growth and propagation. So, plants make a effort how can absorb more the light in poor surroundings. This study set up a goal that imitates the minute surface structure of plants and applies to the existing solar cells's surface structure, so it can improve the efficiency of absorbing light. We used Light Tools software analyzing geometrical optics to analyze efficiency about new designed textures on the computer. We made a comparison between existing textures and new designed textures. Consequently, new designed textures were advanced efficiency, absorbing rates of light increasing about 7 percent. In comparison with existing and new textures, advancing about 20 percent in the efficient aspect.

  • PDF

Analysis of Slope Characteristics of Solar Power Plants in Gangwon Province based on Geospatial Database (산지 태양광 발전시설의 지형 공간 데이터베이스 구축 및 사면 특성 분석)

  • Kim, Ji-Ho;Song, Ki-Il;Yune, Chan-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.155-167
    • /
    • 2024
  • In Korea, many solar power generation facilities are being installed in mountainous regions, which cover 70% of the country' area. This study aimed to analyze the slope characteristics of solar power generation facilities installed in such regions, considering the potential for mountain hazards. A database was created for 663 mountainous solar power generation facilities in Gangwon province, including data on area, slope angle, slope direction, altitude, and soil depth. GIS techniques were used to analyze the slope characteristics of these facilities. The area of solar power generation facilities installed in the Gangwon Mountains ranges from 606 to 320,718 m2. We found that a notable number of these facilities have slopes exceeding the permit standards for mountain solar power installations and steep slope criteria. In addition, most facilities are located south, making them vulnerable to landslides. The correlation between soil depth and slope or topographical altitude was found to be quite low.

A Study on the Optimal Solar Power System for 10kW Wind Power in the Mokpo Seaside (목포해안지역의 10kW급 풍력과 최적의 태양광 복합발전시스템에 관한 연구)

  • Cho, Dong-Hoon;Bae, Cherl-O;Park, Young-San
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.1 s.28
    • /
    • pp.69-73
    • /
    • 2007
  • As the interest in environmental pollution increases, the use of renewable energy is uprising. Among the renewable energy resources, wind and solar energy have no environmental impact and they can be used as unlimited resources. The two power systems are mutual supplementary systems. So the two systems are usually combined for generation. We have measured several data about wind and solar. These data can be used the foundation data for the construction of wind and solar power generation plants. Also we analyzed the possible optimal solar power system for 10[kW] wind power.

  • PDF

A Study on the Solar-OTEC Convergence System for Power Generation and Seawater Desalination (발전 및 해수담수화를 위한 태양열-해양온도차 복합 시스템에 대한 연구)

  • Park, Sung-Seek;Kim, Woo-Joong;Kim, Yong-Hwan;Jeon, Yong-Han;Hyun, Chang-Hae;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.73-81
    • /
    • 2014
  • Ocean thermal energy conversion(OTEC) is a power generation method that utilizes temperature difference between the warm surface seawater and cold deep sea water of ocean. As potential sources of clean-energy supply, Ocean thermal energy conversion(OTEC) power plants' viability has been investigated. Therefore, this paper evaluated the thermodynamic performance of solar-OTEC convergence system for the production with electric power and desalinated water. The comparison analysis of solar-OTEC convergence system performance was carried out as the fluid temperature, saturated temperature difference and pressure of flash evaporator under equivalent conditions. As a results, maximum system efficiency, electric power and fresh water output show at 40, 10, 2.5 kPa of the flash evaporator pressure, respectively. And their respective enhancement ratios were approximately 6.1, 18, 8.6 times higher than that of the base open OTEC system. Also, performance of solar-OTEC system is the highest in the flash evaporator pressure of 10 kPa.

Construction and Operation of Small Solar Plant Using Smart-Off-Grid: Case of Tanzania-Korea Innovative Technology and Energy Center (스마트-독립전력망을 사용한 소규모 태양광 발전소의 건설과 운영: 한국-탄자니아 적정기술 거점센터의 사례)

  • Kim, Jisoo;Jung, Woo-Kyun;Ha, Bo-Ra;Moon, Ji-Hyun;Rhee, Herb;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.5 no.2
    • /
    • pp.62-69
    • /
    • 2019
  • Supplying stable electric power is one of the important objectives of the Official Development Assistance (ODA) because it is strongly related with improving living standards and income levels in the region. However, rural areas in many developing countries are not properly connected to national power grids, and even areas connected to national power grids are frequently blacked out due to limitations in power capacity. These lack of electric power is a major obstacle to improving income levels and improving living standards in those areas. The Korea-Tanzania Innovative and Energy Center (iTEC), which was established by Seoul National University in cooperation with the Nelson-Mandela Africa Institute of Science and Technology and Technology (NM-AIST) try to build a small solar power plant using a smart-off grid in rural area of Tanzania, where there is no electricity. 10 kW and 7 kW solar power plants are built in Mkalama Village in Kilimanajaro Region and Ngurdoto Village in Arusha Region to provide power to about 50 households each. In addition, smart monitoring systems were installed to collect data about status of power system and power consumption of each house. iTEC seeks for sustainable improvement the income level and quality of life of rural residents in developing countries through the construction of small solar power plants using smart-off grid, and the implementation of various connected projects.

Power Quality Analysis Considering Contingency of STATCOM in Jeju Power Grid (제주계통의 STATCOM 상정사고를 고려한 전력품질 해석)

  • Ko, Ji-Han;Kim, Dong-Wan;Kim, Seong Hyun;Kim, Homin;Kim, Eel-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.91-97
    • /
    • 2014
  • This paper presents the modeling and contingency analysis of Jeju power system. For the analysis of contingency with simulation, thermal power plants, current source type HVDC systems, wind farms, STATCOMs and Jeju power load are modeled by PSCAD/EMTDC program. And three kinds of simulation are carried out. Firstly, two STATCOMSs are in normal operation. Secondly, one STATCOM is in fault. Lastly, all of STATCOMs are in fault. These comparative studies will be useful for evaluating the effectiveness of STATCOM to stabilize for the Jeju power system.

Estimation of energy self-sufficiency in municipal wastewater treatment plant using photovoltaic power simulated by azimuth and hydrophilic coating (방위각과 초친수코팅에 따른 태양광발전량 시뮬레이션과 하수처리장 에너지자립율 산정)

  • An, Young-Sub;Kim, Sung-Tae;Kang, Ji-Hoon;Chae, Kyu-Jung;Yoon, Jong-Ho
    • KIEAE Journal
    • /
    • v.11 no.6
    • /
    • pp.133-138
    • /
    • 2011
  • This paper presents energy self-sufficiency simulated in municipal wastewater treatment plants (WWTPs) by adopting solar energy production systems that were simulated by varying azimuth and super-hydrophilic coating on the surface of photovoltaic (PV). Relative to the national average energy consumption in WWTPs, the employment of 100 kW PV system was simulated to achieve 2.75% of energy self-sufficiency. The simulated results suggested that the installation of PVs toward South or Southwest would produce the highest energy self-sufficiency in WWTPs. When super-hydrophilic coating was employed in the conventional PV, 5% of additional solar energy production was achievable as compared to uncoated conventional PV. When 100 kW of PV system was installed in a future test-bed site, Kihyeung Respia WWTP located in Yongin, South Korea, the energy self-sufficiency by solar power was simulated to be 1.77%. The simulated solar power production by azimuth and super-hydrophilic coating will be useful reference for practitioners in designing the solar PV systems in the WWTPs.

Solar Energy Development in Viet Nam: Opportunities and Challenges

  • Nguyen, Binh H.;Kim, Kyung Nam
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.3 no.2
    • /
    • pp.48-54
    • /
    • 2017
  • Nowadays Viet Nam's energy supply which is mainly produced by fossil fuels energy such as coal, gas, and oil. However, the operation of fossil fuel power plants is one of the major causes of environmental pollution and climate change as well. It has a serious impact on the survival of human beings in general. As can be seen, the manufacturing industry is strongly invested, the demand for energy is also increasing. As traditional fossil fuels are being depleted and to minimize environmental pollution, renewable energy is the solution widely used by many countries in the world. Therefore, renewable energy has a significant role in maintaining the sustainability of world economy. Renewable energy sources such as solar energy, wind energy, biomass energy, geothermal energy can supply clean and nature-sourced energy to replace fossil fuels. Encouraging development of renewables is a general trend in the world today, which is also a common goal of COP21 commitment on global GHG reduction. The objective of this study is to assess the opportunities and challenges for renewable energy development in Vietnam, particularly for solar power. This study also discusses policies to promote the development of solar energy in Vietnam. While solar power provides ecological, economic and social benefits, it is exploited very modestly in Vietnam, where there are many barriers to slow down the development of renewable energy.

  • PDF

Determining the Warming Effect Induced by Photovoltaic Power Plants in neighboring Region Using an Analytical Model (해석학적 모델을 이용한 태양광 발전소 주변 지역의 기온 상승 추정 연구)

  • Kim, Hae-Dong;Huh, Kyong-Chun;Kim, Ji-Hye
    • Journal of Environmental Science International
    • /
    • v.27 no.3
    • /
    • pp.227-231
    • /
    • 2018
  • We studied the warming effect induced by Photovoltaic(PV) power plants in rural areas during summer daytime using a simple analytical urban meteorological model. This analysis was based on observed meteorological elements and the capacity of the PV power plant was 10 MWp. The major axis length of the PV power plant was assumed to be 1km. Data of the necessary meteorological elements were obtained from a special meteorological observation campaign established for a over a PV power plant. We assumed that the wind flowed along the major axis of the PV power plant(1 km). As a result, the air temperature on the downwind side of the PV power plant was estimated to invrease by about $0.47^{\circ}C$.

Feasibility study of wind power generation considering the topographical characteristics of Korea (우리나라 지형특성을 고려한 풍력발전 타당성 연구)

  • Moon, Chae-Joo;Cheang, Eui-Heang;Shim, Kwan-Shik;Jung, Kwen-Sung;Chang, Young-Hak
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.24-32
    • /
    • 2008
  • This paper discussed the Feasibility study of wind power generation considering the topographical characteristics of Korea. In order to estimate the exact generation of wind power plants, we analyzed and compared wind resources in mountain areas and plain areas by introducing not only wind speed, the most important variable, but also wind distribution and wind standard deviation that can reflect the influence of landform sufficiently. According to the results of this study, generation was almost the same at wind power plants installed in southwestern coastal areas where wind speed was low as at those installed in mountain areas in Gangwondo where wind speed was high. This demonstrates that the shape parameter of wind distribution is low due to the characteristics of mountain areas, and the standard deviation of wind speed is large due to the effect of mountain winds, therefore, actual generation compared to southwestern coastal areas is almost similar in mountain areas even though wind speed is high.