• Title/Summary/Keyword: solar-cell array

Search Result 122, Processing Time 0.029 seconds

A Study on Simulation of Photovoltaic Module for Stand-Alone Photovoltaic System (독립형 태양광시스템에 적용한 태양광 모듈 시뮬레이션에 관한 연구)

  • Hwang, Gye-Ho;Kim, Won-Gon;Yun, Jong-Bo;Moon, In-Ho;Lee, Bong-Seob;Jung, Do-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.131-137
    • /
    • 2009
  • This presents the equivalent circuit model of solar cell with irradiation and temperature condition. Based on solar cell model, the photovoltaic module specification of manufacturer compare with photovoltaic module simulation and is investigated by simulation results. The obtained results indicate that residual of simulation value and specification value about photovoltaic module is lower. There is considerable validity in simulation of photovoltaic module. Thus, the optimum simulation of photovoltaic module array are studied in this paper. This paper propose the sizing optimization of photovoltaic module array for stand-alone photovoltaic system. Also, the proposed stand-alone photovoltaic system is setting in special region(in seoul). This paper presents simulation characteristic of optimization output power in seoul.

PSCAD/EMTDC Based Modeling of a Grid-Connected Photovoltaic Generation System (PSCAD/EMTDC를 이용한 계통연계형 태양광발전시스템의 모델링)

  • Kim, Seul-Ki;Jeon, Jin-Hong;Kim, Eung-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.204-207
    • /
    • 2004
  • The paper proposes a simulation model of grid-connected photovoltaic generation system (PV system) using on PSCAD/EMTDC, a reliable power system and apparatus transient analysis program. A equivalent circuit model of a solar cell is used for modeling solar array. A series of parameters required for array modeling are deduced from general specification data of a solar module. A PWM voltage source inverter (VSI) model is presented and current control scheme is implemented for VSI control. A maximum power point tracking (MPPT) technique is applied for controlling the PV system. Simulation case study provides V-I and V-P characteristics of solar array and PV system control performance for irradiation changes.

  • PDF

Virtual-Implemented Solar Cell System with New Cell Model (새로운 태양전지 모델을 이용한 태양전지 가상구현 시스템)

  • Jeong, Byung-Hwan;Lee, Sang-Yong;Oh, Bang-Won;Jeon, Yoon-Suk;Choe, Gyu-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1374-1376
    • /
    • 2003
  • The output of solar cell or array depends on the weather conditions such as cell temperature and insolation level. If the output of the photovoltaic system would be regularly generated under any weather conditions, it is so easy to develop the inverter, its related system, and also control algorithm. This can be performed by the VISC(virtual-implemented solar cell) system studied in this paper. And a few I-V curves are provided by the manufacturers, and so any I-V value between the given curves is unknown. The new model for solar cell is proposed which is based on the interpolation. Both simulation and experiment are executed to show the validity of the proposed VISC system.

  • PDF

An Development of Landscape Lighting Power Control System with Solar Cell Generator Equipment for Energy Saving (에너지절감을 위한 태양광발전설비 연계형 경관조명 전력제어시스템의 개발)

  • Kim, Dong-Wan;Park, Sung-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.364-371
    • /
    • 2010
  • In this paper, we propose the landscape lighting power control system with solar sell generator equipment for energy saving, and also which is included the landscape lighting power transformation device. The power transformation device can check inverse current in the power of the solar cell module and control the power of the battery. And we present the design of landscape lighting power control system. The power control system uses microprocessor with charging system and power transformation device. And also it can control the power of loads under consideration intensity of illumination. The landscape lighting loads are composed of LED(Lighting Emitting Diode) and HID(High Intensity Discharge)lamps. To evaluate property, we installed the solar cell array which generate three kilo watt power. Experimental results show that the proposed system can have stability and energy saving on the mixed configuration of electric loads with DC and AC lamps.

Vertical Alignment of Zinc Oxide Micro Rod with Array of 2-Dimensions (2차원 배열구조를 갖는 ZnO 마이크로 막대 구조체의 수직정렬)

  • Lee, Yuk-Kyoo;Jeon, Chan-Wook;Nam, Hyo-Duk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.459-460
    • /
    • 2008
  • Zinc oxide micro rods were fabricated using as chemical bath deposition ok photolithography. Vertically aligned Zinc Oxide rod array as grown by chemical bath deposition method on Zinc Oxide template layer. The ZnO template layer was deposited on glass and the pattering was made by standard photolithography technique. The selective growth of ZnO micro rods were achieved with the masked ZnO template layer substrate. The fabricated ZnO micro rods were found to be single crystalline and have grown along hexagonal c-axis direction of (0002) which is same as the preferred growth orientation of ZnO template layer. The ZnO micro-rod array structure was implemented as a window layer in Cu(InGa)Se2 solar cell and its effect on photovoltaic efficiency was examined.

  • PDF

Global Maximum Power Point Tracking Method of Photovoltaic Array using Boost Converter (부스트 컨버터를 이용한 태양전지 어레이 전역 최대전력 점 추종 방법)

  • Hwang, Dong-Hyeon;Lee, Woo-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.216-223
    • /
    • 2018
  • Since solar cells have non-linear voltage-current output characteristics, Photovoltaic systems require the Maximum Power Point Tracking(MPPT) function. For this reason, a large number of MPPT techniques have been studied. However, the conventional MPPT techniques may fail to track the maximum power point when partial shading occurs in the solar cell array due to its characteristics. Therefore, it is necessary to research the MPPT technique that can follow the maximum power point in the partial shadow condition. In this paper, the characteristics of solar cell arrays in partial shadowing are analyzed and the MPPT technique which can follow the maximum power point in partial shadow condition has been proposed. To validate the proposed MPPT method, simulation and experimentation results are provided.

Energy Balance Analysis of Electrical Power System for Communication Satellite (통신방송위성 전력시스템의 Energy Balance 해석)

  • Choi Jae-dong;Koo Cheol-hea
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.81-84
    • /
    • 2001
  • In the power system of a satellite, solar array and a battery have directly impact on the life time of the satellite, and their stable operation is decided by whether their states are in the steady state operation or not. In this study, solar array capacity and battery characteristics of proposed communication satellite are designed and simulation is conducted according to the operation mode. Each operation mode is classified as the normal and worst case modes, respectively. The normal mode is analyzed under daylight and the eclipse with the EHT burn, and the worst case modes which have solar cell circuit failure, and battery cell failure are analyzed too.

  • PDF

Template-directed Atomic Layer Deposition-grown $TiO_2$ Nanotubular Photoanode-based Dye-sensitized Solar Cells

  • Yu, Hyeon-Jun;Panda, Sovan Kumar;Kim, Hyeon-Cheol;Kim, Myeong-Jun;Yang, Yun-Jeong;Lee, Seon-Hui;Sin, Hyeon-Jeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.239.1-239.1
    • /
    • 2011
  • Dye sensitized solar cells (DSC) are promising devices for inexpensive, nontoxic, transparent, and large-scale solar energy conversion. Generally thick $TiO_2$ nanoporous films act as efficient photoanodes with their large surface area for absorbing light. However, electron transport through nanoparticle networks causes the slowdown and the loss of electron transport because of a number of interparticle boundaries inside the conduction path. We have studied DSCs with precisely dimension-controlled $TiO_2$ nanotubes array as photoanode. $TiO_2$ nanotubes array is prepared by template-directed fabrication method with atomic layer deposition. Well-ordered nanotubes array provides not only large surface area for light absorbing but also direct pathway for electrons with minimalized grain boundaries. Large enlongated anatase grains in the nanotubes could enhance the conductivity of electrons, but also suppress the recombination with holes through defect sites during diffusion into the electrode. To study the effect of grain boundaries, we fabricated two kinds of nanotubes which have different grain sizes by controlling deposition conditions. And we studied electron conduction through two kinds of nanotubes with different grain structures. The solar cell performance was studied as a function of thickness and grain structures. And overall solar-to-electric energy conversion efficiencies of up to 7% were obtained.

  • PDF

Module Characteristic Modeling in Terms of the Number of Divisions of Large-Area Solar Cells (대면적 태양전지의 분할 수에 따른 모듈 특성 모델링 )

  • Juhwi Kim;Jaehyeong Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.136-142
    • /
    • 2023
  • In the past, the efficiency of solar cells had been increased in order to increase the efficiency of solar modules. However, in recent years, in order to increase output in the solar industry and market, the competitiveness of solar cells based on large-area solar cells and multi-bus bar has been increasing. Multi-busbar solar module is a technology to reduce power loss by increasing the number and width of the front busbar of the solar cell and reducing the current value delivered by the busbar by half through half-cutting. In the case of the existing M2 (156.75×156.75 mm2) solar cell, even with a half-cut, power loss could be sufficiently reduced, but as the area of the solar cell is enlarged to more than M6 (166×166 mm2), the need for more divisions emerged. This affected not only solar cells but also inverters required for module array configuration. Therefore, in this study, the electrical characteristics of a large-area solar cell and after division were extracted using Griddler simulation. The output characteristics of the module were predicted by applying the solar cell parameters after division to PSPice, and a guideline for the large-area solar module design was presented according to the number of divisions of the large-area solar cell.

Energy Balance Analysis of Communication Satellite at Transfer Orbit (통신위성 전이궤도 전력운용 분석)

  • Choi J.D.;Seong S.J.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.189-192
    • /
    • 2003
  • Electrical power in satellite system should persistently satisfy specified power requirement even though that happen the failure of solar array string or battery cell during the mission operation. In this study, the solar array and battery of GEO Communication Satellite with 3kW capacity are designed, and energy balance analysis according to power operation mode are performed to meet specified power capacity at the transfer orbit

  • PDF