• 제목/요약/키워드: solar telescope

검색결과 183건 처리시간 0.023초

Infrared Spectro-Polarimeter of the Solar Flare Telescope at NAOJ

  • Hagino, Masaoki;Sakurai, Takashi;Hanaoka, Yoichiro;Shinoda, Kazuya;Noguchi, Motokazu;Miyashita, Masakuni;Fukuda, Takeo;Suzuki, Isao;Arai, Takehiko;Takeyama, Norihide
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.85.2-85.2
    • /
    • 2011
  • A new infrared spectro-polarimeter was installed in 2008 onto the Solar Flare Telescope of NAOJ in the Mitaka headquarters. The Solar Flare Telescope had been operated previously as a filter-based magnetograph and obtained vector magnetograms of active regions with the Fe I 630.3nm line during 1992 - 2005. The aim of this new instrument is to measure the distribution of magnetic helicity over the whole Sun and for an extended period with high magnetic sensitivity in the infrared wavelengths. This spectro-polarimter is able to obtain polarizations in both photospheric and chromospheric layers. In order to take full Stokes profiles, we observe Fe I 1564.8 nm and He I 1083.0 nm lines (with the neighboring photospheric Si line) for the photospheric and chromospheric magnetic field vectors, respectively. The infrared detector of this instrument is a $640{\times}512$-pixel InGaAs camera produced by a Belgian company Xenics. The frame rate of the camera is 90 frames/sec. The 640-pixel row of this camera is set along the spectrograph slit of the polarimeter. Since the slit only covers the solar hemisphere, a full disk map is obtained by raster scanning the solar disk twice. A magnetic map is made of about $1200{\times}1200$ pixels with a pixel size of 1.8 arcsec. It generally takes 1.5 hours to scan the whole Sun. Although some issues on the instrument calibration still remain, a few maps of the whole Sun at the two wavelengths are now taken daily. In this presentation, we will introduce the instrument and present some observational results.

  • PDF

Observations of Solar Filaments with Fast Imaging Solar Spectrograph of the 1.6 meter New Solar Telescope at Big Bear Solar Observatory

  • Song, Dong-Uk;Park, Hyung-Min;Chae, Jong-Chul;Yang, Hee-Su;Park, Young-Deuk;Nah, Ja-Kyoung;Cho, Kyung-Suk;Jang, Bi-Ho;Ahn, Kwang-Su;Cao, Wenda;Goode, Philip R.
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.88.2-88.2
    • /
    • 2011
  • Fast Imaging Solar Spectrograph (FISS) is an instrument developed by Seoul National University and Korea Astronomy and Space Science Institute and installed at the 1.6 meter New Solar Telescope of Big Bear Solar Observatory. Using this instrument, we observed solar filaments and analyzed the data focusing on determining the temperature and non-thermal velocity. We inferred the Doppler absorption widths of $H{\alpha}$ and Ca II 8542$\bar{A}$ lines from the line profiles using the cloud model. From these values, we separately determined temperature and non-thermal velocity. Our first result came from a solar filament observed on 2010 July 29th. Temperature inside a small selected region of this ranges from 4500K to 12000K and non-thermal velocity, from 3.5km/s to 7km/s. We also found temperature varied a lot with time. For example temperature at a fixed point varied from 8000K to 18000K for 40 minutes, displaying an oscillating pattern with a period of about 8 minutes and amplitude of about 2000K. We will also present new results from filaments observed in 2011 summer.

  • PDF

Tiny Pores Observed by New Solar Telescope and Hinode

  • 조경석;봉수찬;채종철;김연한;박영득
    • 천문학회보
    • /
    • 제36권1호
    • /
    • pp.37.2-37.2
    • /
    • 2011
  • Our previous study on tiny pores (R < 2") observed by HINODE/Solar Optical Telescope (SOT) revealed that the plasma in the pores at the photosphere is always moving down and the pores are surrounded by the strong downward motions (highly red-shifted) of neighboring granulations. From this study, we speculated that the flow motions above the pore should be related with the motions at the photosphere, since the pore is strong magnetic field region. Meanwhile, SNU and KASI installed Fast Imaging Solar Spectrograph (FISS) in the Cude room of the 1.6 m New Solar Telescope (NST) at Big Bear Solar Observatory. FISS is a unique system that can do imaging of H-alpha and Ca II 8542 band simultaneously, which is quite suitable for studying of dynamics of chromosphere. To get some clue on the relationship between the photospheric and low-chromospheric motions at the pore region, we took a coordinate observation with NST/FISS and Hinode/SOT for new emerging active region (AR11117) on October 26, 2010. In the observed region, we could find two tiny pores and two small magnetic islands (SMIs), which have similar magnetic flux with the pores but does not look dark. Magnetic flux density and Doppler velocities at the photosphere are estimated by applying the center-of-gravity (COG) method to the HINODE/spectropolarimeter (SP) data. The line-of-sight motions above the photosphere are determined by adopting the bisector method to the wing spectra of Ha and CaII 8542 lines. As results, we found the followings. (1) There are upflow motion on the pores and downflow motion on the SMIs. (2) Towards the CaII 8542 line center, upflow motion decrease and turn to downward motion in pores, while the speed of down flow motion increases in the SMIs. (3) There is oscillating motion above pores and the SMIs, and this motion keep its pattern along the height. (4) As height increase, there is a general tendency of the speed shift to downward on pores and the SMIs. This is more clearly seen on the other regions of stronger magnetic field. In this talk, we will present preliminary understanding of the coupling of pore dynamics between the photosphere and the low-chromosphere.

  • PDF

The Sun Observed by Fast Imaging Solar Spectrograph of the 1.6 meter New Solar Telescope at Big Bear

  • Chae, Jong-Chul;Park, Hyung-Min;Ahn, Kwang-Su;Yang, Hee-Su;Park, Young-Deuk;Nah, Ja-Kyoung;Jang, Bi-Ho;Cho, Kyung-Suk;Cao, Wenda;Gorceix, Nicholas;Goode, Philip R.
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.25-25
    • /
    • 2010
  • With the aim of resolving important physical problems in the chromosphere of the Sun, we developed the Fast Imaging Solar Spectrograph for several years, and at last successfully installed it in the Coude room of the 1.6 meter New Solar Telescope at Big Bear in 2010 May. The instrument is an Echelle spectrograph with imaging capability based on slit scan, and can record two spectral bands (e.g., H alpha band and Ca II 8542 band) simultaneously. The early runs of the instrument produced data of high quality that are suited for the study of quiet Sun, filaments on the disk, prominences outside the limb, active regions and sunspots. We are ready to do good solar sciences using our own instrument, and will be able to do best sciences with the coming improvement of spatial resolution.

  • PDF

북한 학술지에 실린 태양 연구 활동 분석 (ANALYSIS OF SOLAR RESEARCH ACTIVITIES PUBLISHED IN NORTH KOREAN JOURNALS)

  • 김수진;양홍진;정종균;임인성
    • 천문학논총
    • /
    • 제36권2호
    • /
    • pp.37-45
    • /
    • 2021
  • We have analyzed 42 research papers regarding on the solar astronomy written by North Korea scientists to investigate the current status of astronomical activities in North Korea. The papers are surveyed from the 'Bulletin of Astronomy', the 'Physics', the 'Bulletin of Academy of Science', and the 'Natural Science' in North Korea, and SCI journals. In addition, we refer to the presentation material announced in the 2015 IAU by director of Pyongyang Astronomical Observatory (PAO) and the 2013 OAD/IAU reports. We have analyzed the papers statistically according to three criteria such as research subject, research field, and research members. The main research subjects are the sunspot (28%), observation system (21%), and space environments (19%). The research fields are distributed with data analysis (50%), numerical method (29%), and instrument development (21%). There have been 25 and 9 researchers in the solar astronomy and space environment, respectively since 1995. North Korea's solar research activities were also investigated in three area: instrument, solar physics, and international research linkage. PAO has operated two of sunspot telescope and solar horizontal telescope for spectroscopy and polarimetry, but there is no specific information on solar radio telescopes. North Korea has cooperated in solar research with Europe and China. We expect that the results of this study will be used as useful resource in supporting astronomical cooperation between South and North Korea in the future.

1.6 m 신태양망원경용 고속영상태양분광기 개발 (DEVELOPMENT OF THE FAST IMAGING SOLAR SPECTROGRAPH FOR 1.6 m NEW SOLAR TELESCOPE)

  • 나자경;채종철;박영득;박형민;장비호;안광수;양희수;조경석;김연한;김광동
    • 천문학논총
    • /
    • 제26권1호
    • /
    • pp.45-54
    • /
    • 2011
  • KASI and Seoul National University developed the Fast Imaging Solar Spectrograph (FISS) as one of major scientific instruments for the 1.6 m New Solar Telescope (NST) and installed it in the Coude room of the NST at Big Bear Solar Observatory (BBSO) in May, 2010. The major objective of the FISS is to study the fine-scale structures and dynamics of plasma in the photosphere and chromosphere. To achieve it, the FISS is required to take data with a spectral resolution higher than $10^5$ at the spectrograph mode and a temporal resolution less than 10 seconds at the imaging mode. The FISS is a spectrograph using Echelle grating and has characteristics that can observe dual bands (H${\alpha}$ and CaII 8542) simultaneously and perform fast imaging using fast raster scan and two fast CCD cameras. In this paper, we introduce briefly the whole process of FISS development from the requirement analysis to the first observations.

NST/FISS Observations of Ellerman bombs and Surges

  • Yang, Heesu;Chae, Jongchul
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.86.2-86.2
    • /
    • 2013
  • Ellerman bombs(EBs) are emission features at the wings of the H alpha spectral line. They are believed to be a kind of a magnetic reconnection feature in the low chromosphere or near photosphere. It was previously reported that surges often occur in association with EBs. However, previous observations were restricted to imaging observation. Using Fast Imaging Solar Spectrograph installed in New Solar Telescope at Big Bear Solar Observatory, California, we observed 5 EBs and associated surges with high-spatial and high-spectral resolutions. In this presentation, we will show the results and discuss the physical properties.

  • PDF

Chromospheric Sunspot Oscillations in H-alpha and Ca II 8542A

  • Maurya, Ram Ajor
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.61.2-61.2
    • /
    • 2013
  • We study chromospheric oscillations including umbral flashes and running penumbral waves in a sunspot using scanning spectroscopy in H-alpha and Ca II 8542A, with the Fast Imaging Solar Spectrograph (FISS) at the 1.6 meter New Solar Telescope at Big Bear Solar Observatory. A bisector method is applied to spectral observations to construct chromospheric Doppler velocity maps. Temporal sequence analysis of these shows enhanced high-frequency oscillations inside the sunspot umbra in both lines. Their peak frequency gradually decreases outward from the umbra. The oscillation power is found to be associated with magnetic-field strength and inclination, with different relationships in different frequency bands.

  • PDF

Current Status and Improvement of the Fast Imaging Solar Spectrograph of the 1.6m telescope at Big Bear Solar Observatory

  • 박형민;채종철;송동욱;양희수;장비호;박영득;나자경;조경석;안광수
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.112.2-112.2
    • /
    • 2012
  • For the study of fine-scale structure and dynamics in the solar chromosphere, the Fast Imaging Solar Spectrograph (FISS) was installed in 1.6m New Solar Telescope at Big Bear Solar Observatory in 2010. The instrument, installed at a vertical table of the Coude lab, is properly working and producing data for science. From the analysis of the data, however, we noticed that a couple of problems exist that deteriorate image quality : lower light level and poorer resolution of the CaII band data. After several tests, we found that the relay optics at the right position is crucial role for the spatial resolution of raster-scan images. By using resolution target, we re-aligned relay optics and other components of the spectrograph. Here we present the result of optical test and new data taken by the FISS.

  • PDF