• Title/Summary/Keyword: solar power system

Search Result 1,697, Processing Time 0.033 seconds

The Installation of Chul-Won Seismo-Acoustic Array (철원 지진-공중음파 관측망 설치)

  • ;;;;;;;Brian stump;Christ Hayward
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.52-57
    • /
    • 1999
  • Korea Earthquake Monitoring System(KEMS) in the Korea Institute of Geology Mining and Materials(KIGAM) as detected more than 1000 events since the end of 1998. But not all events are interpreted as earthquakes because many events are concentrated on daytime. It strongly implies that in addition to earthquake these events include artificial effects such as industrial blasting. Before the determination of eathquake charactertistics in the korean peninsula it is necessary to discriminate the detected events as earthquakes or artificial events. For the discriminant study KIGAM and SMU(Southern Methodist University) installed a triangular four-element 1-km aperture seismo-acoustic array at Chul-Won area northeast of Seoul Korea. Each array element includes a GS-13 seismometer in the bottom of borehole and a Validyne DP250-14 microbarometer sensor mounted inside of the borehole 1,2 meter deep connected to a 11 arm radial array of 10m porous soaker hoses. This array introduce the use of 2.4-GHz radios for inter-array self-contained solar-charged power system and GPS time-keeping system. A 24-bit digital data acquisition system performs 40 SPS in the infrasound and seismometer data. Velocity and direction of wind and temperature are also measured at hub site and included to the data stresam. This seismo-acoustic array will be used to identify and locate associated with industrial blasting and these identified and located events will be applied to form a ground truth database useful to assist the other development of discriminant studies.

  • PDF

Development of Lora Wireless Network Based Water Supply Control System for Bare Ground Agriculture (자가 충전 및 장거리 무선 네트워크를 지원하는 노지 농작물 관수 자동화 시스템 설계)

  • Joo, Jong-Yui;Oh, Jae-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1373-1378
    • /
    • 2018
  • In order to solve the problems such as reduction of agriculture population, aging and declining of grain self sufficiency rate, agriculture ICT convergence technology utilizing IoT technology is actively being developed. Agricultural ICT technology only concentrates on facility houses, and there is no automated control system in the field of cultivation. In this paper, we propose an irrigation control system that automatically controls the solenoid valves and water pumps in a large area with Lora wireless communication. The proposed system does not require a separate power source by using a small solar panel, and it is very convenient to install and operate supporting wireless auto setup by plug-and-play method. Therefore, it is expected that it will contribute to the reduction of labor force, quality of agricultural products, and productivity improvement.

A Design of Temperature Management System for Preventing High Temperature Failures on Mobility Dedicated Storage (모빌리티 전용 저장장치의 고온 고장 방지를 위한 온도 관리 시스템 설계)

  • Hyun-Seob Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.125-130
    • /
    • 2024
  • With the rapid growth of mobility technology, the industrial sector is demanding storage devices that can reliably process data from various equipment and sensors in vehicles. NAND flash memory is being utilized as a storage device in mobility environments because it has the advantages of low power and fast data processing speed as well as strong external shock resistance. However, flash memory is characterized by data corruption due to long-term exposure to high temperatures. Therefore, a dedicated system for temperature management is required in mobility environments where high temperature exposure due to weather or external heat sources such as solar radiation is frequent. This paper designs a dedicated temperature management system for managing storage device temperature in a mobility environment. The designed temperature management system is a hybrid of traditional air cooling and water cooling technologies. The cooling method is designed to operate adaptively according to the temperature of the storage device, and it is designed not to operate when the temperature step is low to improve energy efficiency. Finally, experiments were conducted to analyze the temperature difference between each cooling method and different heat dissipation materials, proving that the temperature management policy is effective in maintaining performance.

Mechanical Properties of a High-temperature Superconductor Bearing Rotor in a 10 kWh Class Superconductor Flywheel Energy Storage System (10 kWh급 초전도 베어링 회전자의 기계적 특성 평가)

  • Park, B.J.;Jung, S.Y.;Kim, C.H.;Han, S.C.;Park, B.C.;Han, S.J.;Doo, S.G.;Han, Y.H.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.58-63
    • /
    • 2011
  • Recently, superconductor flywheel energy storage systems (SFESs) have been developed for application to a regenerative power of train, a power quality improvement, the storage of distributed power sources such as solar and wind power, and a load leveling. As the high temperature superconductor (HTS) bearings offer dynamic stability without the use of active control, accurate analysis of the HTS bearing is very important for application to SFESs. Mechanical property of a HTS bearing is the main index for evaluating the capacity of an HTS bearing and is determined by the interaction between the HTS bulks and the permanent magnet (PM) rotor. HTS bearing rotor consists of PM and iron collector and the proper dimension design of them is very important to determine a supporting characteristics. In this study, we have optimized a rotor magnet array, which depends on the limited bulk size and performed various dimension layouts for thickness of the pole pitch and iron collector. HTS bearing rotor was installed into a single axis universal test machine for a stiffness test. A hydraulic pump was used to control the amplitude and frequency of the rotor vibration. As a result, the stiffness result showed a large difference more than 30 % according to the thickness of permanent magnet and iron collector. This is closely related to the bulk stiffness controlled by flux pining area, which is limited by the total bulk dimension. Finally, the optimized HTS bearing rotor was installed into a flywheel system for a dynamic stability test. We discussed the dynamic properties of the superconductor bearing rotor and these results can be used for the optimal design of HTS bearings of the 10kWh SFESs.

Effects of Internal Heat Exchanger on Performance of Organic Rankine Cycles (유기랭킨사이클의 성능에 미치는 내부열교환기의 영향)

  • Kim, Kyoung-Hoon;Jung, Yoong-Guan
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.3
    • /
    • pp.402-408
    • /
    • 2011
  • Organic Rankine cycles (ORC) can be used to produce power from heat at different temperature levels available as geothermal heat, as biogenic heat from biomass, as solar or as waste heat. In ORC working fluids with relatively low critical temperatures and pressures can be compressed directly to their supercritical pressures and heated before expansion so as to obtain a better thermal match with their heat sources. In this work thermal performance of ORC with and without an internal heat exchanger is comparatively investigated in the range of subcritical and transcritical cycles. R134a is considered as working fluid and special attention is paid to the effect of turbine inlet pressure on the characteristics of the system. Results show that operation with supercritical cycles can provide better performance than subcritical cycles and the internal heat exchanger can improve the thermal efficiency when the temperature of heat source becomes higher.

Comparison study of heatable window film using ITO and ATO

  • Park, Eun Mi;Lee, Dong Hoon;Suh, Moon Suhk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.300.2-300.2
    • /
    • 2016
  • Increasing of the demand for energy savings for buildings, thermal barrier films have more attracted. In particular, as heat loss through the windows have been pointed out to major problems in the construction and automobile industries, the research is consistently conducted for improving the thermal blocking performance for windows. The main theory of the technology is reflect the infrared rays to help the cut off the inflow of the solar energy in summer and outflow of the heat from indoors in winter to save the energy on cooling and heating. Furthermore, this is well known for prevent glare, reduces fading caused by harmful ultraviolet radiation and easy to apply on constructed buildings if it made as a film. In addition to these advantages, apply the transparent electrode to eliminate condensation by heating. Generally ITO is used as a transparent electrode, but is has a low stability in environmental factors. In this study, ITO and its alternative, ATO, is deposited by sputtering system and then the characteristic is evaluated each material based thermal barrier thin film. The optical property was measured on wide range of wavelength (200 nm 2500 nm) to know the transparency in visible wavelength and reflectivity in IR wavelength range. The electrical property was judged by sheet resistivity. Finally the changes of the temperature and current of the deposited film was observed while applying a DC power.

  • PDF

Chemical Composition of RM_1-390 - Large Magellanic Cloud Red Supergiant

  • Yushchenko, Alexander V.;Jeong, Yeuncheol;Gopka, Vira F.;Vasil'eva, Svetlana V.;Andrievsky, Sergey M.;Yushchenko, Volodymyr O.
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.199-205
    • /
    • 2017
  • A high resolution spectroscopic observation of the red supergiant star RM_1-390 in the Large Magellanic Cloud was made from a 3.6 m telescope at the European Southern Observatory. Spectral resolving power was R=20,000, with a signal-to-noise ratio S/N > 100. We found the atmospheric parameters of RM_1-390 to be as follows: the effective temperature $T_{eff}=4,250{\pm}50K$, the surface gravity ${\log}\;g=0.16{\pm}0.1$, the microturbulent velocity $v_{micro}=2.5km/s$, the macroturbulence velocity $v_{macro}=9km/s$ and the iron abundance $[Fe/H]=-0.73{\pm}0.11$. The abundances of 18 chemical elements from silicon to thorium in the atmosphere of RM_1-390 were found using the spectrum synthesis method. The relative deficiencies of all elements are close to that of iron. The fit of abundance pattern by the solar system distribution of r- and s-element isotopes shows the importance of the s-process. The plot of relative abundances as a function of second ionization potentials of corresponding chemical elements allows us to find a possibility of convective energy transport in the photosphere of RM_1-390.

An Experimental Study on the Organic Rankine Cycle to Utilize Fluctuating Thermal Energy (가변열원에 대응하기 위한 ORC 사이클의 실험적인 연구)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.13-21
    • /
    • 2015
  • The system design of the Organic Rankine Cycle(ORC) is greatly influenced by the thermal properties such as the temperature or the thermal capacity of heat source. Typically waste heat, solar energy, geothermal energy, and so on are used as the heat source for the ORC. However, thermal energy supplying from these kinds of heat sources cannot be provided constantly. Hence, an experimental study was conducted to utilize fluctuating thermal energy efficiently. For this experiment, an impulse turbine and supersonic nozzles were applied and the supersonic nozzle was used to increase the velocity at the nozzle exit. In addition, these nozzles were used to adjust the mass flowrate depending on the amount of the supplied thermal energy. The experiment was conducted with maximum three nozzles due to the capacity of thermal energy. The experimented results were compared with the predicted results. The experiment showed that the useful output power could be producted from low-grade thermal energy as well as fluctuating thermal energy.

A Case Study on the Planning Characteristic and It's Application of Container Architecture in Europe (유럽 컨테이너 건축물의 사례분석을 통한 국내 적용방안)

  • Kim, Mi-Kyoung;Mun, Young-A;Han, Su-Ji
    • Journal of the Korean housing association
    • /
    • v.26 no.1
    • /
    • pp.43-51
    • /
    • 2015
  • The purpose of this study was to analyze the planning characteristics and it's application of container architecture as case study. Field survey was used to analyze the spatial planning characteristics in terms of development outline, appearance, exterior, floor plan and interior of eight famous cases in Berlin, Hamburg, Hannover, Amsterdam and Paris of Europe. The results of this study were as follows; Firstly, good examples of container architectures such as student housing, social service center, temporary medical facility and cruise terminal in Europe suggested the potential of domestic applicability in various purposes and development. Secondly, various types of freight container, building container and module frame system should be developed with their reprocessing environment. Thirdly, it is necessary for us to develop ISO type(20~40ft) container and standard plan with interior and storage design reflecting demands of residents. Finally, the use of container module will be an environmental-friendly alternative for its modularity and reusability, so it should be used as it is without severe deformation. The development of environmental friendly energy sources such as hydro and solar power is necessary for domestic container architecture as well. The container design should include the use of high quality of exterior finishing materials and the plan of aesthetical color planning to make the building a local landmark.

A Study of Zero Energy Building Verification with Measuring and Model-based Simulation in Exhibition Building

  • Ha, Ju-wan;Park, Kyung-soon;Kim, Hwan-yong;Song, Young-hak
    • Architectural research
    • /
    • v.20 no.3
    • /
    • pp.93-102
    • /
    • 2018
  • With the change in Earth's ecosystems due to climate change, a number of studies on zero energy buildings have been conducted globally, due to the depletion of energy and resources. However, most studies have concentrated on residential and office buildings and the performance predictions were made only in the design phase. This study verifies the zero-energy performance in the operational phase by acquiring and analyzing data after the completion of an exhibition building. This building was a retention building, in which a renewable energy system using a passive house building envelope, solar photovoltaic power generation panels, as well as fuel cells were adopted to minimize the maintenance cost for future energy-zero operations. In addition, the energy performance of the building was predicted through prior simulations, and this was compared with actual measured values to evaluate the energy performance of the actual operational records quantitatively. The energy independence rate during the measurement period of the target building was 123% and the carbon reduction due to the energy production on the site was 408.07 tons. The carbon reduction exceeded the carbon emission (331.5 tons), which verified the carbon zero and zero-energy performances.