• 제목/요약/키워드: solar minimum

검색결과 318건 처리시간 0.027초

2009년 7월 22일 부분일식 발생 시 부산지역 기온과 오존농도의 변화 특성 (Characteristics on Variation of Temperature and Ozone Concentration during the Partial Solar Eclipse Event of 22 July 2009 at Busan)

  • 전병일;오인보
    • 한국환경과학회지
    • /
    • 제20권8호
    • /
    • pp.1049-1059
    • /
    • 2011
  • This paper examines the effects of the partial solar eclipse of 22 July 2009 across the Korean peninsular on surface temperature and ozone concentrations in over the Busan metropolitan region (BMR). The observed data in the BMR demonstrated that the solar eclipse phenomenon clearly affects the surface ozone concentration as well as the air temperature. The decrease in temperature ranging from 1.2 to $5.4^{\circ}C$ was observed at 11 meteorological sites during the eclipse as a consequence of the solar radiation decrease. A large temperature drop exceeding $4^{\circ}C$ was observed at most area (8 sites) of the BMR. Significant ozone drop (18~29 ppb) was also observed during the eclipse mainly due to the decreased efficiency of the photochemical ozone formation. The ozone concentration started to decrease at approximately 1 to 2 hours after the event and reached its minimum value for a half hour to 2 hours after maximum eclipse. The rate of ozone fall ranged between 0.18 and 0.49 ppb/min. The comparison between ozone measurements and the expected values derived from the fitted curve analysis showed that the maximum drop in ozone concentrations occurred at noon or 1 PM and was pronounced at industrial areas.

공동주택 배치 계획에 따른단지내 일조 환경 변화에 관한 연구 (A Study on the Variation of Solar Access Right of Apartment Buildings According to Site Planning)

  • 성윤복;여명석;김광우
    • KIEAE Journal
    • /
    • 제4권4호
    • /
    • pp.35-44
    • /
    • 2004
  • In Korea, the apartment buildings have been constructed recently in large quantities to provide housing due to the gravitation of population towards large cities. However, because of this trend toward high-rise apartment, a number of problems are occurred such as the deterioration of comfort in the dwelling environment and the lack of solar access right in apartment buildings. In the building law, the sunshine hour and the minimal separated distance between apartment buildings as regulated as the criteria for the site planning. Most of site planners, however, designed the apartment site only following minimum separated distance. As a result, the problem of sunshine hours lack is caused and legal dispute concerning solar access right is also arisen. The purpose of this study is to improve solar access right regulation and to help site design of apartment planning. Accordingly, we execute empirical analysis based on computer simulation in order to find suitable separated distance between typically designed apartment buildings. First, we estimated sunshine hours according to independent building orientation, height, and length. Second, we calculated sunshine hours in various case of apartment arrangement; parallel type, courtyard type, tower type and etc. with various separated distance.

Si 태양전지에서 SiO2 광반사 방지막의 처리 효과 (Effect of SiO2 Antireflection Coating on the Si Solar Cell)

  • 장지근;임용규;황용운;조재욱
    • 한국재료학회지
    • /
    • 제14권2호
    • /
    • pp.152-156
    • /
    • 2004
  • We have studied the effective optical absorption power of Si solar cell with $SiO_2$-antireflection layer based on a mathematical modelling of AM(air mass)1 spectrum and Si refractive index in the wavelength range(0.4 $\mu\textrm{m}\leq$λ$\leq$$0.97\mu\textrm{m}$). The effective optical absorption power obtained from the theoretical calculation was 450 and 520 W/$\m^2$ for the Si solar cells with $SiO_2$-antireflection layer of 500$\AA$ and 1000$\AA$, respectively. The optimum thickness of $SiO_2$-antireflection layer showing the minimum reflection loss was about 1000$\AA$ in the computer simulation. Two kinds of Si solar cells named EBS(500$\AA$) and EBS(l000$\AA$) were fabricated to evaluate the effect of $SiO_2$-antireflection layer thickness on the optical absorption. The epitaxial base Si cell with $SiO_2$-antireflection layer of 1000$\AA$ [EBS(l000$\AA$)] showed the output power improvement of about 15% upon the EBS(500$\AA$) cell due to larger absorption of effective optical power under illumination of AM1, 1 sun.

Simulation and Model Validation of a Parabolic Trough Solar Collector for Water Heating

  • Euh, Seung-Hee;Kim, Dae Hyun
    • 한국태양에너지학회 논문집
    • /
    • 제33권3호
    • /
    • pp.17-26
    • /
    • 2013
  • The aim of this study is to analyze the performance of a parabolic trough solar collector (PTC) for water heating and to validate the model performance. The simulated model was compared, calibrated and verified with the experimental results. RMSE (Root mean square error) was used to calibrate the convective heat transfer coefficient between the absorber pipe and the ambient air which was the main factor affecting the heat transfer associated with the PTC. The calibrated model was better fitted with the experimental model. The maximum, minimum and mean deviation between the measured and predicted water temperatures differed only $0.81^{\circ}C$, $0.09^{\circ}C$ and $0.31^{\circ}C$ respectively in the calibrated model. RMSE values were decreased from 0.5389 to 0.4910, 0.0134 to 0.0125 and R-squared was increased from 0.9955 to 0.9956 after calibration. The temperature of water was increased from $33.7^{\circ}C$ to $48^{\circ}C$ in 12hour test. The thermal efficiency of the collector was calculated to be 55%. The calibrated model showed good agreement with the experimental data for model validation.

Numerical investigation and optimization of the solar chimney performances for natural ventilation using RSM

  • Mohamed Walid Azizi;Moumtez Bensouici;Fatima Zohra Bensouici
    • Structural Engineering and Mechanics
    • /
    • 제88권6호
    • /
    • pp.521-533
    • /
    • 2023
  • In the present study, the finite volume method is applied for the thermal performance prediction of the natural ventilation system using vertical solar chimney whereas, design parameters are optimized through the response surface methodology (RSM). The computational simulations are performed for various parameters of the solar chimney such as absorber temperature (40≤Tabs≤70℃), inlet temperature (20≤T0≤30℃), inlet height of (0.1≤h≤0.2 m) and chimney width (0.1≤d≤0.2 m). Analysis of variance (ANOVA) was carried out to identify the design parameters that influence the average Nusselt number (Nu) and mass flow rate (ṁ). Then, quadratic polynomial regression models were developed to predict of all the response parameters. Consequently, numerical and graphical optimizations were performed to achieve multi-objective optimization for the desired criteria. According to the desirability function approach, it can be seen that the optimum objective functions are Nu=25.67 and ṁ=24.68 kg/h·m, corresponding to design parameters h=0.18 m, d=0.2 m, Tabs=46.81℃ and T0=20℃. The optimal ventilation flow rate is enhanced by about 96.65% compared to the minimum ventilation rate, while solar energy consumption is reduced by 49.54% compared to the maximum ventilation rate.

빛 에너지 하베스팅을 위한 전력관리회로 (A Power Management Unit for Solar Energy Harvesting)

  • 윤은정;황인호;박종태;유종근
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 추계학술대회
    • /
    • pp.267-271
    • /
    • 2012
  • 본 논문에서는 빛 에너지 하베스팅을 위한 전력관리회로를 제안한다. 솔라셀이 센서노드가 동작할 수 있는 충분한 전압을 출력할 경우는 Power Management Unit(PMU)를 통해 직접 솔라셀의 에너지를 부하로 공급하고, 솔라셀의 출력전압이 센서노드가 동작하기에 충분치 않다면 voltage booster(VB)를 통해 충분한 전압까지 승압하여 이를 PMU를 통해 부하로 공급하도록 설계하였다. 설계된 회로를 0.18um CMOS 공정으로 제작하여 측정한 결과, 솔라셀의 에너지를 PMU를 통해 직접 부하로 공급하는 경우는 보다 많은 에너지가 부하로 공급되었고, VB를 이용하여 PMU를 통해 부하로 에너지를 공급하는 경우는 낮은 전압을 출력하는 초소형 솔라셀에도 적용이 가능하였고 낮은 조도에서도 에너지 공급이 가능하였다.

  • PDF

Influence of the Recombination Parameters at the Si/SiO2 Interface on the Ideality of the Dark Current of High Efficiency Silicon Solar Cells

  • Kamal, Husain;Ghannam, Moustafa
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권2호
    • /
    • pp.232-242
    • /
    • 2015
  • Analytical study of surface recombination at the $Si/SiO_2$ interface is carried out in order to set the optimum surface conditions that result in minimum dark base current and maximum open circuit voltage in silicon solar cells. Recombination centers are assumed to form a continuum rather than to be at a single energy level in the energy gap. It is shown that the presence of a hump in the dark I-V characteristics of high efficiency PERL cells is due to the dark current transition from a high surface recombination regime at low voltage to a low surface recombination regime at high voltage. Successful fitting of reported dark I-V characteristics of a typical PERL cell is obtained with several possible combinations of surface parameters including equal electron and hole capture cross sections.

Changes in Skin Temperature and Physiological Reactions in Murrah Buffalo During Solar Exposure in Summer

  • Das, S.K.;Upadhyay, R.C.;Madan, M.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제10권5호
    • /
    • pp.478-483
    • /
    • 1997
  • Six adult female Murrah buffaloes of about 12 years were exposed to solar radiation during summer when minimum and maximum ambient temperatures were 27.1 and $44.1^{\circ}C$, respectively. The skin surface temperature at forehead, middle pinna, neck, rump, foreleg, hind legs were recorded using non-contact temperature measuring instrument and respiration rate and rectal temperature were measured throughout the 24 hours starting from 6:30 AM. The diurnal fluctuations and temperature gradients have been reported for buffaloes. During summer when ambient temperature and solar radiation was maximum, adult buffaloes were not able to maintain their thermal balance even after increasing the pulmonary frequency 5 - 6 times. The changes in skin temperature at various sites indicate that the temperature of skin surface not only varies in relation to exposure but also due to water diffusion and evaporation.

유기태양전지 응용을 위한 원자층 증착 방식 제작의 알루미늄이 도핑 된 ZnO의 전기적, 구조적 특징 (Structural and Electrical Properties of Aluminum Doped ZnO Electrodes Prepared by Atomic Layer Deposition for Application in Organic Solar Cells)

  • 서인준;류상욱
    • 반도체디스플레이기술학회지
    • /
    • 제13권2호
    • /
    • pp.1-5
    • /
    • 2014
  • Transparent and conducting aluminum-doped ZnO electrodes were fabricated by atomic layer deposition methods. The electrode showed the lowest resistivity of $5.73{\times}10^{-4}{\Omega}cm$ at a 2.5% cyclic layer deposition ratio of Trimethyl-aluminum and Diethyl-zinc chemicals. The electrodes showed minimum resistivity when deposited at a temperature of $225^{\circ}C$. The electrode also showed optical transmittance of about 92% at 300 nm. An organic solar cell made with a 300-nm-thick aluminum-doped ZnO electrode exhibited 2.0% power conversion efficiency.

CBD법으로 제작된 CdS 박막의 thiourea/CdAc2 농도비에 따른 특성 (Properties of CdS Thin Films Prepared by Chemical Bath Deposition as a Function of Thiourea/CdAc2 Ratio in Solution)

  • 송우창
    • 한국표면공학회지
    • /
    • 제41권1호
    • /
    • pp.28-32
    • /
    • 2008
  • In this paper CdS thin films, which were widely used window layer of the CdS/CdTe and the CdS/$CuInSe_2$ heterojunction solar cell, were grown by chemical bath deposition, which is a very attractive method for low-cost and large-area solar cells, and the structural, optical and electrical properties of the films was studied. As the thiourea/$CdAc_2$ mole ratio was increased, the deposition rate of CdS films prepared by CBD was increased due to increasing reaction velocity in solution and the optical bandgap was increased at higher thiourea/$CdAc_2$ mole ratio due to larger grain size and continuous microstructure. The minimum resistivity of the films was at thiourea/$CdAc_2$ mole ratio of 3.