• Title/Summary/Keyword: solar heat system

Search Result 792, Processing Time 0.046 seconds

Study on the Analysis Performance of PVT system using the Dynamic Simulation (동적 시뮬레이션을 이용한 태양광열 시스템의 성능특성 분석)

  • Kim, Sang-Yeal;Nam, Yujin
    • KIEAE Journal
    • /
    • v.15 no.2
    • /
    • pp.95-101
    • /
    • 2015
  • Purpose: A photovoltaic/thermal system is a solar collector combining photovoltaic module with a solar thermal collector, which produces electricity and heat at the same time. PVT system removes heat from PV module through air or liquid that would help to raise the efficiency of the PV systems performance. Many innovative systems and products have been put forward and their quality evaluated by academics and professionals. However, even though various of PVT system were developed and several systems were applied to practical use, there have been few researches for the performance analysis using the dynamic simulation. Method: In this study, the review of recent research and development trend for PVT systems were conducted. Furthermore, in order to develop the optimum design method, the performance analysis for PVT system was conducted by a dynamic simulation. Result: In the results, it was found that the performance of PVT system significantly depends on the ambient temperature and solar radiation. Moreover, in the weather condition of Seoul, average efficiency of electricity and heat in heating season were 13.79 and 41.85%, and they in cooling season were 14.39% and 26.18%, respectively.

Experimental Verification for a Spiral-Jacketed Storage Tank Applied to Solar Thermal System (태양열 시스템에 적용된 나선재킷형 축열조의 실증실험)

  • Kim Jin Hong;Choi Bong Su;Hong Hiki;Kim Yong-Shik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.341-346
    • /
    • 2005
  • The simplification of solar thermal systems reduces the possibility of operating trouble and lowers the cost of the initial investment and maintenance. This also leads to increased competitiveness in the energy market. We proposed a spiral-jacketed storage tank that functions both as a heat exchanger and expansion tank, which removes the secondary piping and markedly simplifies the entire system. The new storage tank was designed and manufactured to maintain the same performance as the conventional system and the exiting system was remodelled by adopting the newly proposed storage tank. This experiment was conducted under real conditions over a period of several months. The retrofitted system with the spiral-jacketed storage tank showed good performance that is on a similar level as the previous system having a typical storage tank and heat exchanger.

A Study on Heat Transfer of n Storage Type Direct Contact Heat Exchanger for Solar Energy Utilization (태양열 이용 축열식 직접접촉 열교환기의 열전달에 관한 연구)

  • Kang, Yong-Heack;Jeon, Myung-Seok;Yoon, Hwan-Ki;Chun, Won-Gee
    • Solar Energy
    • /
    • v.15 no.3
    • /
    • pp.3-14
    • /
    • 1995
  • The Direct Contact heat Exchanger(DCHX) has been widely studied in the chemical industry for many years due to its inherent simplicity as a counter-current divice for heat and mass transfer. In many solar systems, the DCHX unit can be combined with the thermal storage unit, or alternatively, it can be used separately from the storage unit, much like an external(to storage) closed heat exchanger system. In the present work, the spray column type of direct contact heat exchangers are studied extensively to harness the solar energy for hot water and spaced heating. Some of the major considerations that are involved in the design of heat exchangers in this study are that : working fluid is a hydrocaabon(such as Texaterm) or water which is either lighter or heavier than storage medium. The experimental data have revealed some interesting characteristics concerning the application of DCHXs for solar energy utilization. These experiments are carried out in the line of solar heating system, major results are as follows : 1) the flow and aspect of working fluid drop for maxium heat transfer 2) efficiency and volumetric heat transfer coefficient of D.C.H.X with a heavier working fluid are higher than those of D.C.H.X with a lighter working fluid.

  • PDF

The Performance and Efficiency Analysis of a PVT System Compared with a PV module and a Solar collector (PVT 시스템의 PV 모듈 및 태양열 집열기 대비 성능 및 효율 비교분석)

  • Euh, Seung-Hee;Lee, Jeong-Bin;Choi, Yun-Sung;Kim, Dae-Hyun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.60-67
    • /
    • 2011
  • A photovoltaic/thermal(PVT)solar system is the solar technology that allows for simultaneous conversion of solar energy into both electricity and heat. This paper compared the performance of PVT system with a conventional PV module and solar collector and analyzed electrical and thermal efficiency of PVT system in terms of solar irradiance and inlet temperature of the working fluid. Based on the experimental data, thermal and electrical efficiencies of the glazed PVT system were 57.9% and 14.27% under zero reduced temperature condition which were lower by 13.6% than the solar thermal absorber plate and by 0.08% than the PV module respectively. For the unglazed PVT system, it had lower thermal efficiency than the solar thermal absorber plate but higher electrical performance than the PV module due to the cooling effect by the working fluid. However, total efficiency of the glazed PVT system was 72.2% which was higher than combined efficiencies of the solar collector and PV module. Besides, total efficiency of the PVT system would be much higher if calculated based on unit area.

  • PDF

Application of Solar Chimney System for Natural Ventilation in Underground Space (지하공간의 자연환기를 위한 태양 굴뚝 시스템의 응용)

  • Jang, Hyang-In;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.87-95
    • /
    • 2010
  • This study analyzed the performance of solar chimney system for natural ventilation in underground space. A mathematical model of the solar chimney was proposed in order to predict its performance under varying parameters and Korea climatic condition. Steady state heat transfer equations were set up using a energy balanced equations and solved using a inverse matrix method. Numerical simulation program to analyze system was developed by using MATLAB. As the results, the ventilation performance of the solar chimney was determined by the temperature difference of air channel and inlet, and the temperature difference was influenced by insolation, stack height and distance of air gab. Also the solar chimney system can provide $262.9m^3/h$ of annual average ventilation rate. Because seasonal differences of ventilation rate was calculated within 25%, the solar chimney system can be used for every season in Korea climatic condition. Through this study, performance of solar chimney system for natural ventilation was verified by numerical method. Consequently, the solar chimney system is proved to be effective device for natural ventilation utilizing at all times, and the additional studies should be made through the experimental method for imagineering and commercialization.

A Study on Heat Storage System Using Calcined Dolomite - Numerical Analysis of Heat Transfer in Calcined Dolomite Hydration Pocked Bed - (소성Dolomite 수화물계의 축열시스템에 관한 연구 - 소성Dolomite 수화반응층의 전열해석 -)

  • Park, Young-Hae;Kim, Jong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.1
    • /
    • pp.9-21
    • /
    • 2002
  • To develope chemical heat pump using available energy sources, solar heat and other kinds of waste thermal energy, we have studied the heat transfer rate in cylindrical bed reactor packed with calcined Dolomite. Two dimensional (radial and circumferential) Partial differential equations, concerning heat and mass transfer in packed bed of calcined Dolomite, are solved numerically to describe the characteristics of the reaction of calcined Dolomite and heat transfer. The results obtained by numerical analysis about two dimensional profiles of temperature and conversion of reactant in the packed bed reactor and the amount of exothermic heat released from the reactor are follows. It was found that all of calcined Dolomite packed bed kept the reaction temperature of about 750K throughout the entire part of the bed, immediately after the steam was introduced exothermic reaction of hydration was proceeded from the packed bed inpu to output and from wall side to center. The rate of thermochemical reaction depends on the temperature and concentration and it is also governed by the boundary conditions and heat transfer rate in the particle packed bed.

Study on Effects of Seawater Fouling on a Plate-Frame Heat Exchanger (해수 파울링이 판형 열교환기 성능에 미치는 영향에 대한 고찰)

  • Heo, Jaehyeok;Lee, Dong-Won;Kim, Min-Hwi;Baik, Wonkeun;Yun, Rin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.8
    • /
    • pp.391-400
    • /
    • 2017
  • Understanding of seawater fouling characteristics is critical in designing a heat exchanger adapted in an effluent utilization system for a power plant. We reviewed three types of fouling mechanisms of general, biological, and crystallizing for a plate-frame heat exchanger, to be used for heat exchanging with heated effluent from a power plant. Also, mathematical models for each type of seawater fouling were suggested. Actual thermal resistance calculated from seawater fouling models were compared and implemented in designing a plate-frame heat exchanger. The bio-fouling model revealed the largest thermal resistance and the highest number of plates for a plate-frame heat exchanger under the same heat load. Overall heat transfer coefficient and pressure drop of a plate-frame heat exchanger under fouling conditions was lower by 58 percent and higher by 2.85 times than those under clean conditions, respectively.

Development of Solar Concentrator Cooling System (태양광 시스템의 냉각장치 개발)

  • Lee, HeeJoon;Cha, Gueesoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4463-4468
    • /
    • 2014
  • To increase the efficiency of a solar module, the development of solar concentrator using a lens or reflection plate is being proceeded actively and the concentrator pursues the a concentration using a lens or an optical device of a concentration rate and designing as a solar tracking system. On the other hand, as the energy density being dissipated as a heat according to the concentration rate increases, the cares should be taken to cool the solar concentrator to prevent the lowering of efficiency of solar cell by the increasing temperature of the solar cell. This study, researched and developed an economical concentrator module system using a low priced reflection optical device. A concentrator was used as a general module to increase the generation efficiency of the solar module and heat generated was emitted by the concentration through the cooling system. To increase the efficiency of the solar concentrator, the cooling system was designed and manufactured. The features of the micro cooling system (MCS) are a natural circulation method by the capillary force, which does not require external power. By using the potential heat in the case of changing the fluid, it is available to realize high performance cooling. The 117W solar modules installed on the reflective plate and the cooling device in the cooling module and the module unit was not compared. The cooling device was installed in the module resulted in a 28% increase in power output.

Evaluation on Performance of Hybrid Heating System with Solar Collector of Thermosyphon Tube Type (열사이폰관형 태양열집열기를 주열원으로 하는 하이브리드 난방시스템 성능 평가)

  • Chun, Tae-Kyu;Yang, Young-Joon
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.356-361
    • /
    • 2012
  • Recently, even though the researches on renewable energy like geothermal, wind, solar energy have been performed widely, its use-rate in total energy is still low. This study was carried out to investigate the performance of hybrid heating system, which consisted of solar collector of thermosyphon tube type and X-L pipe boiler. Especially, new type of solar collector was tried and compared with double tube type and, futhermore, performance and safety on X-L pipe boiler were investigated. As the results, efficiency of solar collector of thermosyphon tube type was higher 20.7% than that of double tube type, mainly due to its structural characteristics. It was also confirmed that temperature of special heat medium used X-L pipe boiler rose up about 20% rapidly in comparison with that of pure water.

A Study on the Economic Analysis of Cooling-Heating System Using Ground Source Heat in a public library (공공도서관에 지열시스템 적용시 경제성에 관한 연구)

  • Choi, Chang-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.1
    • /
    • pp.56-66
    • /
    • 2012
  • This study evaluated the economic benefits by comparing Cooling-Heating System with the existing system in the public library. The building's annual energy consumption was measured by adding the figures of the absorber chillers, the air conditioners and heaters in the building. The total amount of annual energy consumption was 143.51RT in air-conditioning and 83.66RT in heating. So, We made the capacity of geothermal heat pumps three 50RTs in order to check up this system. In order to estimate each construction and equipment cost and to evaluate economical efficiency, LCC(Life Cycle Cost) method was used and the service life of the building was sixty years. The result of analysis was that the geothermal cooling-heating system was more efficient than the existing system in public library.