• Title/Summary/Keyword: solar flower

Search Result 16, Processing Time 0.03 seconds

A Study on the Creative Design of Solar Flower using TRIZ(6SC) (TRIZ(6SC)를 활용한 솔라 플라워의 창의적설계)

  • Leem, Sa-Hwan;Hong, Seong-Do;Huh, Yong-Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.19-23
    • /
    • 2011
  • Global warming is affecting all industries, and has been applied very quickly in the energy sector. Existing in all countries around the world by using fossil fuels to minimize environmental changes are developing a new alternative energy sources. Among the emerging alternative energy, using solar energy technology is applied across the industry, but the maintenance and repair to integrate solar cells and has been a problem occurs. To prolong the life of cells integrated on a solar cell is exposed when the non-eye, etc., when not integrated by the solar cells should not be exposed. In order to resolve these contradictions, a square solar flower of the biological mother was developed by using TRIZ technique(6SC).

The R&D of hot water production by the combination of solar thermal and a large sized flower cooling system(I) (꽃 저장용 냉장시스템과 태양열 복합형 급탕기 개발연구(I))

  • Jung, Hyun-Chai;Kim, Ki-Sun;Sun, Kyung-Ho
    • Solar Energy
    • /
    • v.12 no.3
    • /
    • pp.84-93
    • /
    • 1992
  • Solar assisted heat pump with freon circulating system has been developed. Revising the cool chamber(flower storage) with the solar thermal hot water producing system, the more amount of hot water can be produced, which can be even used for room panel heating. The compressor was cooled by water jaket instead of air cooled so that the system energy efficiency was improved quite well.

  • PDF

Flower like Buffer Layer to Improve Efficiency of Submicron-Thick CuIn1-xGaxSe2 Solar Cells

  • Park, Nae-Man;Cho, Dae-Hyung;Lee, Kyu-Seok
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1129-1134
    • /
    • 2015
  • In this article, a study of a flower like nanostructured CdS buffer layer for improving the performance of a submicron-thick $CuIn_{1-x}Ga_xSe_2$ (CIGS) solar cell (SC) is presented. Both its synthesis and properties are discussed in detail. The surface reflectance of the device is dramatically decreased. SCs with flower like nanostructured CdS buffer layers enhance short-circuit current density, fill factor, and open-circuit voltage. These enhancements contribute to an increase in power conversion efficiency of about 55% on average compared to SCs that don't have a flower like nanostructured CdS buffer layer, despite them both having the same CIGS light absorbing layer.

Physicochemical Properties and Microbial Analysis of Korean Solar Salt and Flower of Salt (한국산 꽃소금과 천일염의 이화학적 특성 및 미생물 분석)

  • Lee, Hye Mi;Lee, Woo Kyoung;Jin, Jung Hyun;Kim, In Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.7
    • /
    • pp.1115-1124
    • /
    • 2013
  • The present study was conducted to ensure the diversity of domestic solar salt by analyzing the composition and microbiological characteristics of solar salt (from Docho island: DS) and the flower of salt produced in different Korean salt flats (Sinui island: SF, Bigum island: BF, and Docho island: DF). The analyses showed that the moisture content of the three types of flower of salt and solar salt ranged from 10.54~13.82% and NaCl content ranged from 78.81~84.61%. The mineral content of those salts ranged from 3.57~5.51%. The content of insoluble matter in these salts was $0.01{\pm}0.00{\sim}0.05{\pm}0.00%$. The sand content of these salts was $0.01{\pm}0.01{\sim}0.03{\pm}0.01%$. By Hunter's color value analysis, the color of the flower of salt was brighter and whiter than solar salt. The salinity of the flower of salt was a little higher than solar salt as well. The magnesium and potassium ion content of DF was $9,886.72{\pm}104.78mg/kg$ and $2,975.23{\pm}79.73mg/kg$, respectively, which was lower than the content in SF, BF, and DS. The heavy metal content of all salts was acceptable under the Korean Food Sanitation Law. The flower of salt was confirmed to be sweeter and preferable to solar salt. More than 80% of the solar salt crystals were 2~3 mm in size, whereas crystals from the flower of salt were 0.5~2 mm in size. The bacterial diversity of DF and DS were investigated by culture and denaturing gradient gel electrophoresis (DGGE) methods. The number of cultured bacteria in flower of salt was approximately three times more than solar salt. By DGGE analysis, major microbes of DF were Maritimibacter sp., Cupriavidus sp., and unculturable bacteria, and those of DS were Cupriavidus sp., Dunalidella salina and unculturable bacteria. The results of DGGE analysis showed that major microorganisms in solar salts were composed of unidentified and unculturable bacteria and only a few microorganisms were culturable.

Hydrothermally deposited Hydrogen doped Zinc Oxide nano-flowers structures for amorphous silicon thin film solar cells

  • Kim, Yongjun;Kang, Junyoung;Jeon, Minhan;Kang, Jiyoon;Hussain, Shahzada Qamar;Khan, Shahbaz;Kim, Sunbo;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.236.1-236.1
    • /
    • 2015
  • The surface morphology of front transparent conductive oxide (TCO) films is very important to achieve high current density in amorphous silicon (a-Si) thin film solar cells since it can scatter the light in a better way. In this study, we present the low cost hydrothermal deposited uniform zinc oxide (ZnO) nano-flower structure with various aspect ratios for a-Si thin film solar cells. The ZnO nano-flower structures with various aspect ratios were grown on the RF magnetron sputtered AZO films. The diameters and length of the ZnO nano-flowers was controlled by varying the annealing time. The length of ZnO nano-flowers were varied from 400 nm to $2{\mu}m$ while diameter was kept higher than 200 nm to obtain different aspect ratios. The ZnO nano-flowers with higher surface area as compared to conventional ZnO nano structure are preferred for the better light scattering. The conductivity and crystallinity of ZnO nano-flowers can be enhanced by annealing in hydrogen atmosphere at 350 oC. The vertical aligned ZnO nano-flowers showed higher haze ratio as compared to the commercially available FTO films. We also observed that the scattering in the longer wavelength region was favored for the high aspect ratio of ZnO nano-flowers. Therefore, we proposed low cost and vertically aligned ZnO nano-flowers for the high performance of thin film solar cells.

  • PDF

Comparison of Environment, Growth, and Management Performance of the Standard Cut Chrysanthemum 'Jinba' in Conventional and Smart Farms

  • Roh, Yong Seung;Yoo, Yong Kweon
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.6
    • /
    • pp.655-665
    • /
    • 2020
  • Background and objective: This study was conducted to compare the cultivation environment, growth of cut flowers, and management performance of conventional farms and smart farms growing the standard cut chrysanthemum, 'Jinba'. Methods: Conventional and smart farms were selected, and facility information, cultivation environment, cut flower growth, and management performance were investigated. Results: The conventional and smart farms were located in Muan, Jeollanam-do, and conventional farming involved cultivating with soil culture in a plastic greenhouse, while the smart farm was cultivating with hydroponics in a plastic greenhouse. The conventional farm did not have sensors for environmental measurement such as light intensity and temperature and pH and EC sensors for fertigation, and all systems, including roof window, side window, thermal screen, and shading curtain, were operated manually. On the other hand, the smart farm was equipped with sensors for measuring the environment and nutrient solution, and was automatically controlled. The day and night mean temperatures, relative humidity, and solar radiation in the facilities of the conventional and the smart farm were managed similarly. But in the floral differentiation stage, the floral differentiation was delayed, as the night temperature of conventional farm was managed as low as 17.7℃ which was lower than smart farm. Accordingly, the harvest of cut flowers by the conventional farm was delayed to 35 days later than that of the smart farm. Also, soil moisture and EC of the conventional farm were unnecessarily kept higher than those of the smart farm in the early growth stage, and then were maintained relatively low during the period after floral differentiation, when a lot of water and nutrients were required. Therefore, growth of cut flower, cut flower length, number of leaves, flower diameter, and weight were poorer in the conventional farm than in the smart farm. In terms of management performance, yield and sales price were 10% and 38% higher for the smart farm than for the conventional farm, respectively. Also, the net income was 2,298 thousand won more for the smart farm than for the conventional farm. Conclusion: It was suggested that the improved growth of cut flowers and high management performance of the smart farm were due to precise environment management for growth by the automatic control and sensor.

Synthesis of Nanopowders by Hydrothermal Method and their Application to Dye-sentisized Solar Cell Materials (수열합성을 이용한 나노분말 합성 및 연료감응태양전지 응용)

  • Lim, JinYoung;Ahn, Jeongseok;Ahn, Jung-Ho
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.309-315
    • /
    • 2018
  • In the present work, we synthesize nano-sized ZnO, $SnO_2$, and $TiO_2$ powders by hydrothermal reaction using metal chlorides. We also examine the energy-storage characteristics of the resulting materials to evaluate the potential application of these powders to dye-sensitized solar cells. The control of processing parameters such as pressure, temperature, and the concentration of aqueous solution results in the formation of a variety of powder morphologies with different sizes. Nano-rod, nano-flower, and spherical powders are easily formed with the present method. Heat treatment after the hydrothermal reaction usually increases the size of the powder. At temperatures above $1000^{\circ}C$, a complete collapse of the shape occurs. With regard to the capacity of DSSC materials, the hydrothermally synthesized $TiO_2$ results in the highest current density of $9.1mA/cm^2$ among the examined oxides. This is attributed to the fine particle size and morphology with large specific surface area.

A Survey on the Use and Recognition of Various Salts in Kimchi Production (김치에 사용되는 소금의 이용실태 및 소비자 인식 연구)

  • Kim, Ju-Hyeon;Yoon, Hei-Ryeo
    • Journal of the Korean Society of Food Culture
    • /
    • v.26 no.6
    • /
    • pp.554-561
    • /
    • 2011
  • The nutritional value of kimchi is gaining global focus along with new possibilities and uses for the various salts used in making kimchi. The purpose of the study is to conduct research on the uses of various salts and investigate the consumer recognition of salt use in kimchi preparation. The findings are from 824 consumers over 19 years old from 15 locations who participated in this questionnaire via one-to-one interviews from September 23rd to October 14th, 2009. The results of the questionnaire show that when customers cooked, 71.9% used solar salt, 62.2% used flower salt (refined salt), 27.4% used Hanju salt (purified salt), 59.0% used processed salt (roasted salt), 47.4% used bamboo salt, 69.4% used Mat salt (table salt), and 18.2% used low sodium salt. The most preferred origin of salts was domestic. Most customers salted Chinese cabbage while preparing kimchi. Consumers showed low perceptions of different salts used in kimchi production, and did not exactly recognize the characteristics of various salts. The preferences for domestic and solar salts were very high, while the preference for sea salts was low. In conclusion, various types of salts could improve the quality of kimchi. This study hopes to help consumers produce better kimchi to match different needs. Therefore, attention should be paid to promoting the characteristics of various salts influencing the quality of kimchi.

Relativeness between Growth and Bio-informations of Aeroponically Grown Tomato as Influenced by Spray Intervals of Nutrient Solution (양액의 분무간격에 따른 분무경재배 토마토의 생장 및 생체정보와의 관련성)

  • 정순주;소원온;지전영남;영목방부
    • Journal of Bio-Environment Control
    • /
    • v.1 no.2
    • /
    • pp.154-161
    • /
    • 1992
  • This experiment was carried oui to determine the relativeness between growth, yield characters and bio-informations as influenced by the spray and rest time intervals of nutrient solution. Tomato(Lycopersicon esculentum Mill.) were grown in aeroponic system on a misting schedule of continuously 60 sec, 30 sec and 10 sec at 10 min intervals with full strength Yamazaki's solution recommended for tomato production. The results obtained were as follows : 1. Leaf area was highest in the plot of 30 sec spray and 10 min rest while the forest one was the plot of 60 sec spray and 10 min rest. Growth characteristics in terms of dry weight of each organ, number of flower, number of flower setted and fruit dry weight were greater in the plot of 30 sec spray and 10 min rest than the other treatments. 2. The number of flower increased with decreasing dry weight but number of flower sorted was not significantly different among treatment except for the plot of 60 sec spray and 10 min rest. 3. Leaf dry weight and fruit dry weight were highly correlated so that 30 sec spray and 10 min rest plot which is the highest fruit dry weight showed the largest leaf area. Continuously sprayed plot reduced markedly the fruit dry weight compared with leaf area. Optimum spray and rest time of nutrient solution in the range of this experiment was determined as 30 sec spray and 10 min rest. 4. Solar radiation within glasshouse during daytime reduced severely compared with outdoor one and air temperature within greenhouse was higher than the leaf temperature of tomato plant. The changes of environmental factors, solar radiation, temperature were accompanied with the sensitive change of bio-informations of tomato leaf Especially differences of spray intervals of nutrient solution affected greatly to the changes of bio-informations : leaf water potential, stomatal resistance and leaf temperature etc. 5. The changing patterns of leaf growth as influenced by the spray and rest intervals of nutrient solution were closely related to the leaf water potential, stomatal resistance and leaf temperature. Feasibility was demonstrated that measurement of bio-information of tomato leaf as influenced by the change of environmental factors could be expected to the amount of growth and fruit yield.

  • PDF

Growth and Cut-Flower Productivity of Spray Rose as Affected by Shading Method during High Temperature Period (차광방법에 따른 고온기 절화용 스프레이 장미의 생장 및 절화 생산성)

  • Cheong, Dong-Chun;Lee, Jin-Jae;Choi, Chang-Hak;Song, Young-Ju;Kim, Hee-Jun;Jeong, Jong-Sung
    • Horticultural Science & Technology
    • /
    • v.33 no.2
    • /
    • pp.227-232
    • /
    • 2015
  • This experiment was carried out to investigate the effects of shading materials (aluminum specific-shading screen and polypropylene non-woven fabric) and shading ratio (50% and 70%) on climatic changes, cut-flower quality, and yield of spray rose cultivars for export during high temperature periods. The daily cumulative solar radiations were higher with the aluminum specific-shading screen, especially with 50% shading compared to polypropylene non-woven fabric. Air temperature and root zone temperature within rockwool media greatly decreased with the aluminum specific-shading screen, but relative air humidity was not different among shading methods. Chlorophyll contents (SPAD values) were slightly higher with aluminum-specific shading screen than with polypropylene non-woven fabric, and were higher with 50% than with 70% aluminum specific-shading screen. Except for 'Lovely Lydia', marketable and exportable yields of all cultivars were higher with 50% than with 70% aluminum shading treatment. In addition, flowers talk length, stem diameter, number of node and 7ea-leaflet, and floret number tended to be better with aluminum specific-shading screen. Flower stalk length was higher with 70% than with 50% aluminum shading treatment. Chromaticity of petals slightly increased, and vase life was 0.5-2.5 days longer for each cultivar with aluminum specific-shading screen than with polypropylene non-woven fabric.