• Title/Summary/Keyword: solar energy production

Search Result 440, Processing Time 0.023 seconds

Analysis of prediction model for solar power generation (태양광 발전을 위한 발전량 예측 모델 분석)

  • Song, Jae-Ju;Jeong, Yoon-Su;Lee, Sang-Ho
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.243-248
    • /
    • 2014
  • Recently, solar energy is expanding to combination of computing in real time by tracking the position of the sun to estimate the angle of inclination and make up freshly correcting a part of the solar radiation. Solar power is need that reliably linked technology to power generation system renewable energy in order to efficient power production that is difficult to output predict based on the position of the sun rise. In this paper, we analysis of prediction model for solar power generation to estimate the predictive value of solar power generation in the development of real-time weather data. Photovoltaic power generation input the correction factor such as temperature, module characteristics by the solar generator module and the location of the local angle of inclination to analyze the predictive power generation algorithm for the prediction calculation to predict the final generation. In addition, the proposed model in real-time national weather service forecast for medium-term and real-time observations used as input data to perform the short-term prediction models.

Status of Photovoltaics in Korea (국내 태양광발전 산업 현황)

  • Kim, Hyun-Il;Kang, Gi-Hwan;Park, Kyung-Eun;Yu, Gwon-Jong;Suh, Seung-Jik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.196-201
    • /
    • 2008
  • The photovoltaic(PV) industry has been growing around the PV advanced countries such as Japan, Germany, Europe and USA. In recent years, China became a strong performer in the world PV market share, increasing solar cell production rapidly The global photovoltaic (PV) market grew by over 40% in 2007, with approximately 2.3GW of newly installed capacity. The global cumulative installed capacity has reached 9GW. The cumulative installed power of PV system in Korea tremendously increased to 74.7MW at the end of 2007. Up to Sep. 2008 The cumulative installed power of PV system in Korea is approximately 377MW. The value chain of photovoltaic in Korea is creating actively. Thus Korea is predicted to see 800MW of modules installed in 2010. Korea's renewable energy is also targeting to take 5% of the total energy consumption by 2011.

  • PDF

Hydrogen Production Technology (수소생산기술현황)

  • Joo, Oh-Shim
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.688-696
    • /
    • 2011
  • Hydrogen is one of the few long-term sustainable clean energy carriers, emitting only water as by-products during its combustion or oxidation. The use of fossil fuels to produce hydrogen makes large amount of carbon dioxide (>7 kg $CO_{2}$/kg $H_{2}$) during the reforming processes. Hydrogen production can be environmentally benign only if the energy and the resource to make hydrogen is sustainable and renewable. Biomass is an attractive alternative to fossil fuels for carbon dioxide because of the hydrogen can be produced by conversion of the biomass and the carbon dioxide formed during hydrogen production is consumed by biomass generation process. Hydrogen production using solar energy also attracts great attention because of the potential to use abundance natural energy and water.

2-Step Thermochemical Water Splitting on a Active Material Washcoated Monolith Using a Solar Simulator as Heat Source (인공태양을 이용한 모노리스 적용 반응기에서 2단계 열화학적 물분해 연구)

  • Kang, Kyoung-Soo;Kim, Chang-Hee;Park, Chu-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.109-115
    • /
    • 2007
  • Solar energy conversion to hydrogen was carried out via a two-step thermochemical water splitting using metal oxide redox pair. To simulate the solar radiation, a 7 kW short arc Xe-lamp was used. Partially reduced iron oxide and cerium oxide have the water splitting ability, respectively. So, $Fe_3O_4$ supported on $CeO_2$ was selected as the active material. $Fe_3O_4/CeO_2$(20 wt/80 wt%) was prepared by impregnation method, then the active material was washcoated on the ceramic honeycomb monolith made of mullite and cordierite. Oxygen was released at the reduction step($1673{\sim}1823\;K$) and hydrogen was produced from water at lower temperature($873{\sim}1273\;K$). The result demonstrate the possibility of the 2-step thermochemical water splitting hydrogen production by the active material washcoated monolith. And hydrogen and oxygen was produced separately without any separation process in a monolith installed reactor. But the SEM and EDX analysis results revealed that the support used in this experiment is not suitable due to the thermal instability and coating material migration.

Characterization of Low-temperature Conductive Films Bonded PV Modules and Its Field Test (저온 전도성 필름으로 본딩된 태양광 모듈의 특성 평가 및 실증 연구)

  • Baek, Su-Wung;Choi, Kwang-Il;Lee, Suk-Ho;Cheon, Chan-Hyuk;Hong, Seung-Min;Lee, Kil-Song;Shin, Hyun-Woo;Yang, Yeon-Won;Lim, Cheol-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.189-194
    • /
    • 2014
  • In this paper, PV modules using a low-temperature conductive film(LT-CF) as a bonding material between a cell and a solder free ribbon were produced and chracterized, which is more environmental-friendly, cost effective and high efficient. Mainly, filed electrical performance of PV modules using three different types of bonding material; a convetional solder ribbon(SR), a LT-CF and a light-capturing Ribbon(LCR) were compared to comfirm the feasibility of LT-CF as a bonding material. The filed test were conducted for 3 months and results were discussed in terms of amount of output energy production and efficiency.

Study on Energy Independence Plan and Economic Effects for Sewage Treatment Plant (하수처리시설의 에너지자립화 및 경제적 효과분석)

  • Park, Kihak;Lee, Hosik;Ha, Junsu;Kim, Keugtae;Lim, Chaeseung
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.2
    • /
    • pp.128-136
    • /
    • 2021
  • It is generally known that a wastewater treatment plant (WWTP) consumes immense energy even if it can produce energy. With an aim to increase the energy independence rate of WWTP from 3.5% in 2010 to 50% in 2030, the Korean government has invested enormous research funds. In this study, cost-effective operating alternatives were investigated by analyzing the energy efficiency and economic feasibility for biogas and power generation using new and renewable energy. Based on the US EPA Energy Conservation Measures and Korea ESCO projects, energy production and independence rate were also analyzed. The main energy consumption equipment in WWTP is the blower for aeration, discharge pump for effluent, and pump for influent. Considering the processes of WWTP, the specific energy consumption rate of the process using media and MBR was the lowest (0.549 kWh/㎥) and the highest (1.427 kWh/㎥), respectively. Energy-saving by enhancing anaerobic digester efficiency was turned out to be efficient when in conjunction with stable wastewater treatment. The result of economic analysis (B/C ratio) was 2.5 for digestive gas power generation, 0.86 for small hydropower, 0.49 for solar energy, and 0.15 for wind energy, respectively. Furthermore, it was observed that the energy independence rate could be enhanced by installing energy production facilities such as solar and small hydropower and reducing energy consumption via the replacement of high-efficiency operating.

Study on Relation between $H_2$ Evolution and Photoelectrical Properties of Photoanode (광어노드의 수소 제조와 광전기 특성에 관한 상관관계 연구)

  • Bae, Sang-Hyun;Kang, Joon-Won;Shim, Eun-Jung;Yoon, Jae-Kyung;Joo, Hyun-Ku
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.3
    • /
    • pp.244-249
    • /
    • 2007
  • The present work considers the concept of enzymatic photoelectrochemical generation of hydrogen through water splitting using a Xe lamp as a source of light. A solar cell was applied to the system in order to shift the level of electrochemical energy of the system, resulting in the rate of hydrogen production at $43\;{\mu}mol/(cm^2{\times}hr)$ in cathodic compartment with an anodized tubular $TiO_2$ electrode(ATTE, $5^{\circ}C$/1hr in 0.5 wt% HF-$650^{\circ}C$/5hr). The trend of the rate of hydrogen production, for the ATTEs with different annealing temperature from $350^{\circ}C$ to $850^{\circ}C$, fairly well coincided with the photoelectrical properties measured by potentiostat. The actual chemical bias through imposition of two electrolytes of different pHs between anode(13.68) and cathode(7.5) was 0.24eV.

Bow Reduction in Thin Crystalline Silicon Solar Cell with Control of Rear Aluminum Layer Thickness (박형 결정질 실리콘 태양전지에서의 휨현상 감소를 위한 알루미늄층 두께 조절)

  • Baek, Tae-Hyeon;Hong, Ji-Hwa;Lim, Kee-Joe;Kang, Gi-Hwan;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.108-112
    • /
    • 2012
  • Crystalline silicon solar cell remains the major player in the photovoltaic marketplace with 90 % of the market, despite the development of a variety of thin film technologies. Silicon's excellent efficiency, stability, material abundance and low toxicity have helped to maintain its position of dominance. However, the cost of silicon photovoltaic remains a major barrier to reducing the cost of silicon photovoltaics. Using the crystalline silicon wafer with thinner thickness is the promising way for cost and material reduction in the solar cell production. However, the thinner thickness of silicon wafer is, the worse bow phenomenon is induced. The bow phenomenon is observed when two or more layers of materials of different temperature expansion coefficiencies are in contact, in this case silicon and aluminum. In this paper, the solar cells were fabricated with different thicknesses of Al layer in order to reduce the bow phenomenon. With lower paste applications, we observed that the bow could be reduced by up to 40% of the largest value with 130 micron thickness of the wafer even though the conversion efficiency decrease of 0.5 % occurred. Since the bowed wafers lead to unacceptable yield losses during the module construction, the reduction of bow is indispensable on thin crystalline silicon solar cell. In this work, we have studied on the counterbalance between the bow and conversion efficiency and also suggest the formation of enough back surface field (BSF) with thinner Al paste application.

  • PDF

Probabilistic Production Cost Credit Evaluation of Wind Turbine Generators (풍력발전기의 확률론적 발전비용 절감기여도 평가)

  • Park, Jeong-Je;Wu, Liang;Choi, Jae-Seok;Cha, Jun-Min
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.312-314
    • /
    • 2008
  • This paper develops an algorithm for probabilistic production cost credit evaluation of wind turbine generators (WTG) with multi-state. Renewable energy resources such as wind, wave, solar, micro hydro, tidal and biomass etc. are becoming importance stage by stage because of considering effect of the environment. Wind energy is one of the most successful sources of renewable energy for the production of electrical energy. Case study demonstrates that the wind speed credit in view point of economics can be assessed by using the proposed methodology.

  • PDF