• Title/Summary/Keyword: solar

Search Result 11,204, Processing Time 0.034 seconds

A Change of Yearly Solar Radiation Energy Resources in Korea (국내 태양광자원의 경년변화)

  • Jo, Dok-Ki;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.81-86
    • /
    • 2010
  • Since the solar energy resource is the main input for sizing any solar photovoltaic system and solar thermal power system, it is essential to utilize the solar radiation data as a application and development of solar energy system increase. It will be necessary to understand and evaluate the insolation data. The Korea Institute of Energy Research(KIER) has begun collecting horizontal global insolation data since May, 1982 and direct normal insolation data since December 1992 at 16 different locations in Korea. Because of a poor reliability of existing data, KIER's new data will be extensively used by solar energy system users as well as by research institutes. From the results, the yearly averaged horizontal global insolation was turned out 3.60kWh/$m^2$/day and a significant difference of horizontal global insolation is observed between 1982~1990 and 1991~1999, 2000~2008 through 16 different cities in Korea.

Characteristics of Solar Wind Density Depletions During Solar Cycles 23 and 24

  • Park, Keunchan;Lee, Jeongwoo;Yi, Yu;Lee, Jaejin;Sohn, Jongdae
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.105-110
    • /
    • 2017
  • Solar wind density depletions are phenomena that solar wind density is rapidly decreased and keep the state. They are generally believed to be caused by the interplanetary (IP) shocks. However, there are other cases that are hardly associated with IP shocks. We set up a hypothesis for this phenomenon and analyze this study. We have collected the solar wind parameters such as density, speed and interplanetary magnetic field (IMF) data related to the solar wind density depletion events during the period from 1996 to 2013 that are obtained with the advanced composition explorer (ACE) and the Wind satellite. We also calculate two pressures (magnetic, dynamic) and analyze the relation with density depletion. As a result, we found total 53 events and the most these phenomena's sources caused by IP shock are interplanetary coronal mass ejection (ICME). We also found that solar wind density depletions are scarcely related with IP shock's parameters. The solar wind density is correlated with solar wind dynamic pressure within density depletion. However, the solar wind density has an little anti-correlation with IMF strength during all events of solar wind density depletion, regardless of the presence of IP shocks. Additionally, In 47 events of IP shocks, we find 6 events that show a feature of blast wave. The quantities of IP shocks are weaker than blast wave from the Sun, they are declined in a short time after increasing rapidly. We thus argue that IMF strength or dynamic pressure are an important factor in understanding the nature of solar wind density depletion. Since IMF strength and solar wind speed varies with solar cycle, we will also investigate the characteristics of solar wind density depletion events in different phases of solar cycle as an additional clue to their physical nature.

The Effects of Water Flow Rates on the Performance of a Capillary Tube Solar Collector for Greenhouse Heating (온실 난방을 위한 모세관형 태양열 집열기의 성능에 미치는 유량의 효과에 관한 연구)

  • 유영선;장유섭;홍성기;윤진하;정두호;강영덕
    • Journal of Bio-Environment Control
    • /
    • v.5 no.1
    • /
    • pp.57-64
    • /
    • 1996
  • To use effectively the solar energy in greenhouse heating, a high performance solar collector should be developed. And then the size of the solar collector and thermal storage tank should be determined through the calculation of heating load. The solar collector must be set in the optimum tilt angle and direction to take daily solar radiation maximally, and the flow rate of heat transfer fluid through the solar collector should be kept in the optimum range. In this research, the performance tests of a capillary tube solar collector were performed to determine the optimum water flow rate and the results summarized as follows. 1. The regressive equations for efficiency estimations of the capillary tube solar collector in the open loop were modeled in the water flow rate of 700-l,000 $\ell$/hr. 2. The optimum water flow rate of the solar collector was estimated by the second order polynomial regression and the maximum efficiency was 80% at the water flow rate of 850 $\ell$/hr. 3. The solar thermal storage system consisted of a capillary tube solar collector and a water storage tank was tested at the water flow rate of 850 $\ell$/hr in the closed loop, and obtained the solar thermal storage efficiency of 55.2%. 4. As the capillary tube solar collector engaged in this experiment was made of non-corrosive polyolefin tubes, its weight was as light as 1/30 of the flat plate solar collector made of copper tubes. Therefore it was considered to be suitable for the greenhouse heating system.

  • PDF

Output Power Characteristics of CPV Solar Cell due to Non-uniform Illumination (고집광 태양전지의 비균등 조사에 의한 출력특성)

  • Shin, Goo-Hwan;Ryu, Kwang-Sun;Cha, Won-Ho;Myung, Noh-Hoon;Kim, Young-Sik;Kang, Gi-Hwaw
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.269-274
    • /
    • 2011
  • A solar cell is primary parts to produce electrical energy from the Sun. And, we can utilize those solar cells as a power generation system in home, factory, and so on. In order to make proper power, the solar cells are configured in series and parallel lay down. In condition of uniform illumination, the solar array will produce an enough power by photovoltaic effects from the solar cells. In case of non-uniform illumination on the solar cells, the power will be dramatically decreased compared to design. Fortunately, there were so many research outputs regarding the illumination effects on solar array. In this work, we tried to find out the non-uniform effects on unit CPV solar cell, because there were no research outputs for unit CPV solar cell considering illumination. The CPV solar cell was used in CPV system to make a power by the Sun. We chosen the triple junction solar cell of GaAsInP2Ge for simulation, which has a 30 % of conversion efficiency. By simulation, we obtained the output performance of CPV solar cells in condition of various illumination by using Hamming Window function. Its performance was degraded by 10 % to 50 % depending illumination conditions.

  • PDF

Improvement of solar cell efficiency using selective emitter (Selective emitter를 이용한 태양전지 효율 향상)

  • Hong, Kuen-Kee;Cho, Kyeong-Yeon;Seo, Jae-Keun;Oh, Dong-Joon;Shim, Ji-Myung;Lee, Hyun-Woo;Kim, Ji-Sun;Shin, Jeong-Eun;Kim, Ji-Su;Lee, Eun-Joo;Lee, Soo-Hong;Lee, Hae-Seok
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.56-59
    • /
    • 2011
  • The process conditions for high efficiency industrial crystalline Si solar cells with selective emitter were optimized. In the screen printed solar cells, the sheet resistance must be 50-60V/sq. because of metal contact resistance. But the low sheet resistance causes the increase of the recombination and blue response at the short wavelength. Therefore, the screen printed solar cells with homogeneous emitter have limitations of efficiency, and this means that the selective emitter must be used to improve cell efficiency. This work demonstrates the feasibility of a commercially available selective emitter process, based on screen printing and conventional diffusion process. Now, we improved cell efficiency from 18.29% to18.45% by transition of heavy emitter pattern and shallow emitter doping condition.

  • PDF

The Analysis and Design of the Driving System for the Solar Car (한국교통대학교 Solar Car 구동 시스템 분석 및 설계)

  • Kim, IL-Song
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.5
    • /
    • pp.865-872
    • /
    • 2019
  • In this paper, we describe the Solar Car, Woongbi, which was created to participate in the World Solar Challenge(WSC) at the team NeulHaeRang of Korea National University of Transportation. The WSC is the world's largest solar car racing competition and has a separate automobile regulation and must be manufactured to meet the regulations. Therefore, the key point of the solar car design is to optimize the energy efficiency based on the regulations. The solar car's drive system consists of a solar array to convert solar energy into electric energy, a maximum power point tracker (MPPT) controller to track the converted electric energy to maximum output power, a battery to store the produced electric energy, a BLDC (Brushless DC) motor for driving the vehicle by converting energy into mechanical energy, and a motor controller for controlling the BLDC. The optimal design methods for solar energy conversion and electric driving system of battery, motor are presented in this paper.

Fresnel lens-DCPC-concentrating solar cell-heat sink type solar module (Fresnel 렌즈-DCPC-집광형태양전지-방열판형 solar module에 관한 연구)

  • 송진수
    • 전기의세계
    • /
    • v.30 no.10
    • /
    • pp.655-661
    • /
    • 1981
  • The concentrating solar module with high concentration ratio(320)has been studied.in this paper. The solar module was composed of the EMVJ solar cell, (Fresnel Lens-DCPC)concentrator and heat sink, and was measured by using the PASTF system. The experimental result and the result analysis for the individual item of the module were as f ollows; (1) The conversion efficiency of the module was 8.3%. (2) The optical efficiency of the concentrator was 46.5% (DCPC; 84.8%, Fresnel Lens; 54.8%). (3) The thermal loss of the solar cell was 4.9%. And methods for the further improvement of the concentrating solar module efficiency have been suggested.

  • PDF

The Energy Performance Evaluation of Multi-purpose Solar Window System (다기능 복합 솔라윈도우 시스템의 에너지성능평가)

  • Cho, Yil-Sik;Kim, Byoung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.10-15
    • /
    • 2010
  • The aim of this study was to analysis the Heating/cooling performance of Solar Window System built in apartments. The solar window is the idea to integrate daylight as a third form of solar energy into a PV/Solar Collector system and allows more control due to the possibility to close the reflectors. However, there can be a conflict between the desire for on one hand daylight and view and on the other hand optimal energy conversion for the PV/Solar Collector system. The process of this study is as follows: 1) The Solar Window system is designed through the investigation of previous paper and work. 2)The simulation program(ESP-r, Therm5.0, Window6.0) was used in energy performance analysis. The reference model of simulation was made up to analysis energy performance on Solar Window system. 3)Selected reference model(Floors:15, Area of Unit:$148.5m^2$) for heating/cooling energy analysis, Energy performance simulation with various variants, such as U-value of Solar Window system according to its position and angle. Consequently, When Solar Window system is equipped with balcony window of Apartment, Annual heating and cooling energy of reference model was cut down about 5%~11%.

Analysis of Direct and Diffuse Radiation in Plastic Greenhouse (플라스틱 하우스의 직달(直達) 및 산란(散亂) 일사량(日射量) 해석(解析))

  • Koh, Hak-Kyun;Kim, Moon-Ki;Kim, Yong-Hyeon
    • Solar Energy
    • /
    • v.9 no.3
    • /
    • pp.13-24
    • /
    • 1989
  • Direct and diffuse components of solar radiation were measured inside and outside a single-span plastic greenhouse. To analyze the direct solar radiation inside the plastic greenhouse, the cross-section of the greenhouse was assumed to be circular. Then the direct solar radiation transmitted into the greenhouse was calculated theoretically, and compared with the experimental measurements. The results are summarized as follows: (1) The transmissivities of total solar radiation were about 65% on cloudy days and 50% on clear days. For cloudy days, the transmissivity of the total solar radiation was regarded as the transmissivity of sky diffuse radiation. (2) The ratio of the inside effective scattered component of direct solar radiation to the diffuse radiation was 60-65%. (3) It appeared that the seasonal variation of the transmissivity of total solar radiation was adversely affected by the transmissivity of direct solar radiation and the effective scattered coefficient. But the effect of the transmissivity of direct solar radiation was dominant factor. (4) Computer simulation showed that the inside direct solar radiation was decreased as the floor of the plastic greenhouse was higher. (5) The predicted value of the inside direct solar radiation was 3.3% to 29.0% higher than the measured value.

  • PDF

A Basic Study to Predict Solar Insolation using Meteorological Observation Data in Korea (국내 기상 측정결과를 이용한 일사량 예측 방법 기초 연구)

  • Hwangbo, Seong;Kim, Hayang;Kim, Jeongbae
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.27-33
    • /
    • 2014
  • To well design the solar energy system using solar energy, the correlation to calculate solar irradiation is basically needed. So, this study was performed to reveal the relationships between the solar irradiation and four meteorological observation data(dry bulb temperature, relative humidity, sunshine duration, and cloud cover) which are different from previous other researches. And then, we finally proposed the first order non-linear correlation from the measured solar irradiation using four meteorological observation data with MINITAB. To show the deviation of the solar irradiation between measured and calculated, this study compared using the daily total solar irradiance and the maximum peak value. From those results, the calculation error was estimated about maximum 25.4% for the daily total solar irradiance. The error of the solar irradiation between measured and calculated was made from the curve fitting error. So, solar irradiation prediction correlation with higher accuracy can be obtained using 2nd or higher order terms with four meteorological observation data.