• Title/Summary/Keyword: soilborne disease.

Search Result 33, Processing Time 0.02 seconds

Control of Soilborne Fungal Diseases on Muskmelon by Soil Disinfestation in Consecutively Cultivated Fields (토양살균에 의한 멜론 연작재배지 뿌리썩음병 방제)

  • Lee, Jung-Sup;Choi, Jang-Jeon;Choi, Jin-Ho;Huh, Yun-Chan
    • Research in Plant Disease
    • /
    • v.15 no.1
    • /
    • pp.30-35
    • /
    • 2009
  • This study was carried out to determine the causal agents of soil-borne fungal diseases that pose a threat to the muskmelon production in Cheong Yang, Korea and to investigate the potential effects of hot water drenching and three fumigant (metam sodium, dazomet and methyl bromide) on these diseases. As the agents of the diseases, Monosporascus cannonballus, Didymella sp., Fusarium sp., Phytophthora sp., were detected. Hot water and the fumigants were treated on two successive cropping seasons of melon. Soil temperature was measured at 0, 10, 20 and 30 cm soil depth. In 2005, soil sterilization by hot-water was more effective significantly to control of the diseases than by fumigant. yield was the highest in hot-water sterilized plot as $39\;ton{\cdot}ha^{-1}$. Dazomet ($50\;g/m^2$) treated plot was followed as $23\;ton{\cdot}ha^{-1}$. In 2006, hot water sterilized plot showed higher yields than non-treated plots ($14.8\;ton{\cdot}ha^{-1}$). But the other three fumigant contained Dazomet ($50\;g/m^2$) were no difference (P<0.05) in yield.

Effect of Soil Fumigation and Maize Cultivation on Reduction of Replant Failure in Ginseng (토양 훈증 및 녹비작물 재배가 인삼의 연작장해 경감에 미치는 영향)

  • Lee, Sung Woo;Lee, Seung Ho;Seo, Moon Won;Jang, In Bok;Jang, In Bae;Yu, Jin;Moon, Ji Won;Suh, Soo Jung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.3
    • /
    • pp.248-253
    • /
    • 2018
  • Background: Dazomet are widely used as soil fumigant to solve soilborne problems, and the degradation intermediates are toxic to nematodes, fungi, bacteria, insects and weeds. Methods and Results: The effects of cultivation of green manure crop, maize before and after soil fumigation on the control of ginseng root rot disease were compared using soil where 6-years-old ginseng was harvested. Fumigant (dazomet) were used for soil fumigation in May and September, respectively. Maize was grown for soil management before and after soil fumigation. After May fumigation, the sowing date of maize was delayed by 15 days and thus its dry weight was decreased significantly. Maize cultivation after May fumigation increased pH but decreased EC, $NO_3$, $P_2O_5$, and K significantly. Maize cultivation after May fumigation decreased fungi population and the ratio of fungi and bacteria. Growth of 2-years-old ginseng was improved and the incidence of ginseng root rot was significantly decreased by maize cultivation after May fumigation. After harvesting 2-years-old ginseng, the population of Cylindrocarpon destructans was not different between treatment of May and September, but Fusarium solani showed a significant increase in September fumigation after maize cultivation. Conclusions: Maize cultivation after soil fumigation was effective in inhibiting ginseng root rot by the amendment of mineral composition and microorganism in fumigated soil.

Infection of Daughter Plants by Fusarium oxysporum f. sp. fragariae through Runner Propagation of Strawberry (딸기 영양번식을 통한 Fusarium oxysporum f. sp. fragariae의 자묘 감염)

  • Nam, Myeong-Hyeon;Kang, Yang-Jae;Lee, In-Ha;Kim, Hong-Gi;Chun, Chang-Hoo
    • Horticultural Science & Technology
    • /
    • v.29 no.3
    • /
    • pp.273-277
    • /
    • 2011
  • Fusarium oxysporum f. sp. fragariae (Fof), the causal agent of crown and root rot in strawberry, is the most serious soilborne disease of nursery plants in Korea. The possibility of infection by Fof through runner propagation from infected mother plants of strawberry cv. 'Kumhyang' was assessed in stolons and daughter plants hanging from raised beds. The number of daughter plants from an infected mother plant in plastic house and photosynthetic photon flux (PPF) system, 280 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ was 2.7 and 3.8 plants after 58 days, respectively. However, healthy mother plants produced 6.5 and 8.4 daughter plants, respectively. The pathogen was detected in the uppermost portion of the stolon after 58 days, but was not detected further down the stolon. After 90 days, it was detected in all portions of the stolon between mother and $1^{st}$ daughter plant and in 60% of all $1^{st}$ daughter plants. The pathogen was not detected in the corresponding portions of the non-infected controls. These results show that infected mother plants can transmit Fof to their daughter plants without passing through the soil and $1^{st}$ daughter was used as mother plant in PPF system for propagating healthy plants.