• Title/Summary/Keyword: soil-water retention curve

Search Result 46, Processing Time 0.026 seconds

Optimal Volume Estimation for Non-point Source Control Retention Considering Spatio-Temporal Variation of Land Surface (지표면의 시공간적 변화를 고려한 비점오염원 저감 저류지 최적용량산정)

  • Choi, Daegyu;Kim, Jin Kwan;Lee, Jae Kwan;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.9-18
    • /
    • 2011
  • In this study the optimal volume for non-point source control retention is estimated considering spatio-temporal variation of land surface. The 3-parameter mixed exponential probability density function is used to represent the statistical properties of rainfall events, and NRCS-CN method is applied as rainfall-runoff transformation. The catchment drainage area is divided into individual $30m{\times}30m$ cells, and runoff curve number is estimated at each cell. Using the derived probability density function theory, the stormwater probability density function at each cell is derived from the rainfall probability density function and NRCS-CN rainfall-runoff transformation. Considering the antecedent soil moisture condition at each cell and the spatial variation of CN value at the whole catchment drainage area, the ensemble stormwater capture curve is established to estimate the optimal volume for an non-point source control retention. The comparison between spatio-temporally varied land surface and constant land surface is presented as a case study for a urban drainage area.

Differences in Morphological Properties and Soil Moisture Characteristics Curve of Cultivated Land Derived from Major Parent Rocks in Yeong-nam Province Areas (영남지역 주요 모암지대별 밭토양 모래입자의 형태적 특성 및 토양수분특성곡선의 차이에 관한 연구)

  • Sonn, Yeon-Kyu;Jung, Yeun-Tae;Son, Il-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.211-214
    • /
    • 1999
  • To acknowledge the differences in soil physical properties of cultivated land derived from major parent rocks in Yeong-nam areas, we investigated Riley's projection sphericity(one of the morphological properties) of sand and made up Soil Moisture Characteristics Curve(SMCC). The averages in Riley s projection sphericity range from 0.63 to 0.67 in soils derived from Sedimentary rocks than 0.56 to 0.61 in soils derived from igneous rocks. In case of soils derived from igneous rocks, the Riley's projection sphericity is lower as the particle size get to be smaller. The differences of SMCC were larger in the fine loamy soils than in coarse loamy soils. The moisture retention was higher in the soils derived from Sedimentary rocks than in the soils derived from Igneous rocks. After we transformed the water retention into dimensionless scale value by available water ratio, the SMCC was nearly unchangeable in the tested soils except for fine loamy soils derived from Sedimentary rock, but was not correlated with soil texture or parent rocks.

  • PDF

Analysis of Regional Antecedent Wetness Conditions Using Remotely Sensed Soil Moisture and Point Scale Rainfall Data (위성토양수분과 지점강우량을 이용한 지역 선행습윤조건 분석)

  • Sunwoo, Wooyeon;Kim, Daeun;Hwang, Seokhwan;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.587-596
    • /
    • 2014
  • Soil moisture is one of the most important interests in hydrological response and the interaction between the land surface and atmosphere. Estimation of Antecedent Wetness Conditions (AWC) which is soil moisture condition prior to a rainfall in the basin should be considered for rainfall-runoff prediction. In this study, Soil Wetness Index (SWI), Antecedent Precipitation Index ($API_5$), remotely sensed Soil Moisture ($SM_{rs}$), and 5 days ground Soil Moisture ($SM_{g5}$) were selected to estimate the AWC at four study area in the Korean Peninsula. The remotely sensed soil moisture data were taken from the AMSR-E soil moisture archive. The maximum potential retention ($S_{obs}$) was obtained from direct runoff and rainfall using Soil Conservation Service-Curve Number (SCS-CN) method by rainfall data of 2011 for each study area. Results showed the great correlations between the maximum potential retention and SWI with a mean correlation coefficient which is equal to -0.73. The results of time length representing the time scale of soil moisture showed a gap from region to region. It was due to the differences of soil types and the characteristics of study area. Since the remotely sensed soil moisture has been proved as reasonable hydrological variables to predict a wetness in the basin, it should be continuously monitored.

Analysis of Rainfall Induced Infiltration Considering Occluded Air in Unsaturated Soils (갇힌 공기를 고려한 불포화토 침투 해석에 관한 연구)

  • Lee, Joon-Yong;Yu, Chan;Kim, Uk-Gie;Kim, Dong-Wook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.129-139
    • /
    • 2012
  • Accurate modeling rainfall induced landslide and slope stability requires a detailed knowledge of the distribution of material strength characteristics and suction distribution. However, material properties obtained from the drying cycle are still used for infiltration analysis in many cases, even though material properties of wetting cycle are quite different from those of drying cycle due to hydraulic hysteresis and air occlusion. Therefore, the selection of proper material properties such as soil-water retention curve (SWRC) and the hydraulic conductivity function (HCF) reflecting characteristics of wetting cycle and air occlusion is an essential prerequisite in order to simulate the infiltration phenomena and to predict the suction and water content distribution in unsaturated soils. It is concluded that the simulation of infiltration with material properties from the drying cycle did not reasonably match with experimental outputs. Further discussion is made on how to describe the material properties considering air occlusion during wetting cycle over the entire suction range in order to simulate infiltration phenomena.

Estimation of Parameters in Water Retention Function using Volumetric Pressure Plate Extractor (체적기압판 추출장치를 이용한 물보유함수의 매개변수 추정)

  • 윤성용;박재현;김상준
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.3
    • /
    • pp.144-152
    • /
    • 1997
  • In this study the experiment on water retention cure was conducted by using a volumetric pressure plate extractor for two different soils (SUS and KUS). When the volumetric pressure plate extractor is used, the volume of water removed from the soil sample at each increasing pressure step can be accurately measured and retained. When pressure values are subsequently reduced, the volume of water that returns to the soil can then also be accurately measured. The hysteresis effect of water retention curve was considered in the experiment. Parameters of water retention function were estimated by fitting experimental data with three proposed equations. Results of estimation showed that parameters of Gardner, Brooks-Corey and van Genuchten equations were found to be associated with air-entry value and width of size distribution. Consequently van Genuchten equation was proved to be best fined through the measured data points.

  • PDF

Capillary Bundle Model for the Estimation of Air-water Interfacial Area and the Gas-filled Pore Size Distribution in Unsaturated Soil (모세관 모델을 이용한 불포화토양의 물-가스 접촉면적 및 가스공극 크기분포의 계산 및 검증)

  • Kim, Heonki
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • Air-water interfacial area is of great importance for the analysis of contaminant mass transfer processes occurring in the soil systems. Capillary bundle model has been proposed to estimate the specific air-water interfacial areas in unsaturated soils. In this study, the measured air-water interfacial areas of a soil (loam) using the gaseous interfacial tracer technique were compared to those from capillary bundle model. The measured values converged to the specific solid surface area (7.6×104 ㎠/㎤) of the soil. However, the simulated air-water interfacial areas based on the capillary bundle model deviated significantly from those measured. The simulated values were substantially over-estimated at low end of the water content range, whereas the model under-estimated the air-water interfacial area for the most of the water content range. This under-estimation is considered to be caused by the nature of the capillary bundle model that replaces the soil pores with a bundle of glass capillaries and thus no surface roughness at the inner surface of the capillaries is taken into account for the estimation of the air-water interfacial area with the capillary bundle model. Subsequently, appropriate correction is necessary for the capillary bundle model to estimate the air-water interfacial area in soils. Since the soil-moisture release curve data is the basis of the capillary bundle model, the model can be of use due to its simplicity, while the gaseous tracer technique requires complicated experimental equipment followed by moment analysis of the breakthrough curves. The size distribution profile of the pores filled with gas estimated by the water retention curve was found to be similar to that of particle size at different size range. The shifted distribution of gas-filled pores toward smaller size side compared to the particle size distribution was also found.

Experimental Study on Hysteresis Phenomena in Porous Media (다공성 매질에서 이력현상에 대한 실험적 연구)

  • 강우영;박재현
    • Water for future
    • /
    • v.28 no.4
    • /
    • pp.215-222
    • /
    • 1995
  • The water retention function which has the hysteresis phenomena is required to analyze the Richards equation which is a governing equation of the unsaturated flow, and its hysteresis phenomena has influence upon the characteristics of the unsaturated flow. The accuracy of the published hysteresis models is compared by using experimental data of the water retention function. The apparatus to experiment the hysteresis phenomena on the soil is developed, and experimental data for the main wetting process and the main drying process of the water retention function are obtained. The parameters of the van Genuchten equation are calibrated by using experimentally obtained data. As a result of the comparison of the selected hysteresis models which simulate the main drying curve from the main wetting curve, the Model I-1(Mualem) overestimates and the Model II-1(Mualem) underestimates but the Model III-2(Park and Sonu) similarly estimates the experimental data of the main drying curve.

  • PDF

Determination of Water Retention Characteristics of Organic and Inorganic Substrates for Horticulture by European Standard Method (유럽표준배지분석법에 의한 원예용 유기·무기성 배지의 수분보유특성)

  • Kang, Ji-Young;Park, Soon-Nam;Lee, Hyun-Haeng;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.2
    • /
    • pp.55-58
    • /
    • 2004
  • The objective of this study was to get information about water retention characteristics of horticultural substrates used in Korea determined by European standard method. Water retention curves were prepared at water volume (v/v, %) in relation to -10 cm, -50 cm, -100 cm water pressure head. Water retention curves showed different properties depending upon the type, the place of origin, particle size, and manufacturing processes of substrates. Peat and coir had easily available water content in the range of 30-40% and showed high water holding capacity, water buffering capacity, and aeration for plant growth. However, bark, sawdust and rice hull showed low water holding capacity about below 10%. The easily available water content of perlite and clay ball was low about 0.1-13.8%, whereas that of vermiculite and rockwool granulate was high about 25.9-52.0%. Understanding water retention characteristics of growing substrates is very important in cstablisliing optimum condition for plant growth. Further study on water retention curves for more substrates, mixture and growing media is needed.

Soil-Water Characteristic Curve of Sandy Soils Containing Biopolymer Solution (바이오폴리머를 포함한 모래지반의 흙-습윤 특성곡선 연구)

  • Jung, Jongwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.10
    • /
    • pp.21-26
    • /
    • 2018
  • Soil-water characteristic curve, which is called soil retention curve, is required to explore water flows in unsaturated soils, relative permeability of water in multi-phase fluids flow, and change to stiffness and volume of soils. Thus, the understanding of soil-water characteristic curves of soils help us explore the behavior of soils inclduing fluids. Biopolymers are environmental-friendly materials, which can be completely degraded by microbes and have been believed not to affect the nature. Thus, various biopolymers such as deacetylated power, polyethylene oxide, xanthan gum, alginic acid sodium salt, and polyacrylic acid have been studies for the application to soil remediation, soil improvement, and enhanced oil recovery. PAA (polyacrylic acid) is one of biopolymers, which have shown a great effect in enhanced oil recovery as well as soil remediation because of the improvement of water-flood performance by mobility control. The study on soil-water characteristic curves of sandy soils containing PAA (polyacrylic acid) has been conducted through experimentations and theoretical models. The results show that both capillary entry pressure and residual water saturation dramatically increase according to the increased concentration of PAA (polyacrylic acid). Also, soil-water characteristic curves by theoretical models are quite well consistent with the results by experimental studies. Thus, soil-water characteristic curves of sandy soils containing biopolymers such as PAA (polyacrylic acid) can be estimated using fitting parameters for the theoretical model.

Analysis of an Actual Slope Failure in the Residual Soil by Suction Stress Based Effective Stress (흡수응력에 기반한 유효응력에 의한 실제 잔류토 사면 붕괴의 해석)

  • Oh, Seboong;Lu, Ning;Park, Young Mog;Lee, Junsuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.113-120
    • /
    • 2012
  • An actual slope failure was analyzed in residual soils at Jinju. Due to rainfall infiltration, the safety factor decreases in the unsaturated layers, since the effective stress and shear strength decrease. In this study, the effective stress is based on suction stress using soil water retention curve. Unsaturated properties were evaluated on soil water retention curve, hydraulic conductivity and shear strength with samples from the site. After infiltration analysis of unsaturated flow under the actual rainfall, the distribution of pore water pressure could be calculated in the slope layers. In the stress field of finite elements, an elastic analysis calculated total stress distribution in the layers and also shear stresses on the slip surface using elastic model. On the slip surface, suction stress and effective stress evaluated the shear strength. As a result, the factor of safety was calculated due to rainfall, which could simulate the actual slope failure. In particular, it was found that the suction stress increases and both the effective stress and the shear strength decrease simultaneously on the slip surface.