• 제목/요약/키워드: soil-structure-interaction analysis

검색결과 448건 처리시간 0.025초

지반의 비선형을 고려한 지반-구조물 상호작용계의 지진응답해석 (Earthquake Response Analysis of Soil-Structure Interaction Systems considering Nonlinear Soil Behavior)

  • 이종세;최준성;임동철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.361-368
    • /
    • 2000
  • This paper demonstrates how nonlinear soil behavior in a soil-structure interaction system can be realistically incorporated by using a hybrid method in a nonlinear time-domain analysis. The hybrid method employs a general-purpose nonlinear finite element program coupled with a linear SSI program for the unbounded layered soil medium In order to verify the validity and applicability of the hybrid method, nonlinear earthquake response analyses are carried out for the Hualien free-field problem, in which the ground and underground accelerations were measured during several earthquake events, and for a 2-D subway station. It is found that the nonlinear earthquake responses predicted for the Hualien free-field using the hybrid method compare very well with the observed responses whereas the subway station example gives reasonable results.

  • PDF

A simplified method for free vibration analysis of wall-frames considering soil structure interaction

  • Kara, Dondu;Bozdogan, Kanat Burak;Keskin, Erdinc
    • Structural Engineering and Mechanics
    • /
    • 제77권1호
    • /
    • pp.37-46
    • /
    • 2021
  • In this study, a method for free vibration analysis of wall-frame systems built on weak soil is proposed. In the development of the method, the wall-frame system that constitutes the superstructure was modeled as flexural-shear beam. In the study, it is accepted that the soil layers are isotropic, homogeneous and elastic, and the waves are only vertical propagating shear waves. Based on this assumption, the soil layer below is modeled as an equivalent shear beam. Then the differential equation system that represented the behavior of the whole system was written for both regions in a separate way. Natural periods were obtained by solving the differential equations by employing boundary conditions. At the end of the study, two examples were solved and the suitability of the proposed method to the Finite Element Method was evaluated.

Seismic behavior of RC framed shear wall buildings as per IS 1893 and IBC provisions

  • Jayalekshmi, B.R.;Chinmayi, H.K.
    • Geomechanics and Engineering
    • /
    • 제9권1호
    • /
    • pp.39-55
    • /
    • 2015
  • Usually the analyses of structures are carried out by assuming the base of structures to be fixed. However, the soil beneath foundation alters the earthquake loading and varies the response of structure. Hence, it is not realistic to analyze structures by considering it to be fixed. The importance of soil-structure interaction was realized from the past failures of massive structures by neglecting the effect of soil in seismic analysis. The analysis of massive structures requires soil flexibility to be considered to avoid failure and ensure safety. Present study, considers the seismic behavior of multi-storey reinforced concrete narrow and wide buildings of various heights with and without shear wall supported on raft foundation incorporating the effect of soil flexibility. Analysis of the three dimensional models of six different shear wall positions founded on four different soils has been carried out using finite element software LS DYNA. The study investigates the differences in spectral acceleration coefficient (Sa/g), base shear and storey shear obtained following the seismic provisions of Indian standard code IS: 1893 (2002) (IS) and International building code IBC: 2012 (IBC). The base shear values obtained as per IBC provisions are higher than IS values.

Three dimensional dynamic soil interaction analysis in time domain through the soft computing

  • Han, Bin;Sun, J.B.;Heidarzadeh, Milad;Jam, M.M. Nemati;Benjeddou, O.
    • Steel and Composite Structures
    • /
    • 제41권5호
    • /
    • pp.761-773
    • /
    • 2021
  • This study presents a 3D non-linear finite element (FE) assessment of dynamic soil-structure interaction (SSI). The numerical investigation has been performed on the time domain through a Finite Element (FE) system, while considering the nonlinear behavior of soil and the multi-directional nature of genuine seismic events. Later, the FE outcomes are analyzed to the recorded in-situ free-field and structural movements, emphasizing the numerical model's great result in duplicating the observed response. In this work, the soil response is simulated using an isotropic hardening elastic-plastic hysteretic model utilizing HSsmall. It is feasible to define the non-linear cycle response from small to large strain amplitudes through this model as well as for the shift in beginning stiffness with depth that happens during cyclic loading. One of the most difficult and unexpected tasks in resolving soil-structure interaction concerns is picking an appropriate ground motion predicted across an earthquake or assessing the geometrical abnormalities in the soil waves. Furthermore, an artificial neural network (ANN) has been utilized to properly forecast the non-linear behavior of soil and its multi-directional character, which demonstrated the accuracy of the ANN based on the RMSE and R2 values. The total result of this research demonstrates that complicated dynamic soil-structure interaction processes may be addressed directly by passing the significant simplifications of well-established substructure techniques.

현장자료를 사용한 지반-구조물 상호작용에 대한 경험적 연구 (System Identification Analysis on Soil-Structure Interaction Using Field Data)

  • 김승현
    • 한국지반공학회논문집
    • /
    • 제21권2호
    • /
    • pp.37-46
    • /
    • 2005
  • 최근 지진공학 제반분야의 연구동향은 지진발생시 구조물의 거동을 보다 합리적/경제적으로 고려하는 내진성능 목표 개념에 입각하여 많은 향상을 성취하고 있다. 특히, 실제 지진에서 관측된 자료를 사용하여 시방기준과 해석기법에 많은 보완이 이루어지고 있는 실정이다. 그러나, 지반-구조물 상호작용에 대한 연구는 경험적으로 입증된 해석방법의 정립이 아직까지 과제로 남아있는 분야이다. 이러한 취지에서, 본 연구에서는 구조물과 지표면 자유장 운동의 강진기록이 잘 관측되어 있는 2매 사이트를 선택하여, 입/출력 자료를 가지고 시스템 특성치즐 추정할 수 있는 System Identification 기법을 이용하여 지반-구조물 상호작용의 해석기법 중 가장 보편적이며 비교적 간단한 주파수 영역의 Impedance 함수를 계산하고 그 결과를 바탕으로 관성력에 의한 지반-구조물 상호작용에 대한 고찰을 수행한다.

Dynamic response of integrated vehicle-bridge-foundation system under train loads and oblique incident seismic P waves

  • Xinjun Gao;Huijie Wang;Fei Feng;Jianbo Wang
    • Earthquakes and Structures
    • /
    • 제26권2호
    • /
    • pp.149-162
    • /
    • 2024
  • Aiming at the current research on the dynamic response analysis of the vehicle-bridge system under earthquake, which fails to comprehensively consider the impact of seismic wave incidence angles, terrain effects and soil-structure dynamic interaction on the bridge structure, this paper proposes a multi-point excitation input method that can consider the oblique incidence seismic P Waves based on the viscous-spring artificial boundary theory, and verifies the accuracy and feasibility of the input method. An overall numerical model of vehicle-bridge-soil foundation system in valley terrain during oblique incidence of seismic P-wave is established, and the effects of seismic wave incidence characteristics, terrain effects, soil-structure dynamic interactions, and vehicle speeds on the dynamic response of the bridge are analyzed. The research results indicate that with an increase in P wave incident angle, the vertical dynamic response of the bridge structure decreased while the horizontal dynamic response increased significantly. Traditional design methods which neglect multi-point excitation would lead to an unsafe structure. The dynamic response of the bridge structure significantly increases at the ridge while weakening at the valley. The dynamic response of bridge structures under earthquake action does not always increase with increasing train speed, but reaches a maximum value at a certain speed. Ignoring soil-structure dynamic interaction would reduce the vertical dynamic response of the bridge piers. The research results can provide a theoretical basis for the seismic design of vehicle-bridge systems in complex mountainous terrain under earthquake excitation.

비선형 지반특성이 수평 방향운동을 받는 기초지반체계의 동적강성에 미치는 영향 (Effects of Nonlinear Soil Characteristics on the Dynamic Stiffnesses of a Foundation-Soil System Excited with the Horizontal Motion)

  • 김용석
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.120-129
    • /
    • 2000
  • As structure-soil interaction analysis for the seismic analysis of structures requires a nonlinear analysis of a structure-soil system considering the inelastic characteristics of soil layers nonlinear analyses of the foundation-soil system with the horizontal excitation were performed considering the nonlinear soil conditions for the nonlinear seismic analysis of structures. Stiff soil profile of SD and soft soil profile of SE specified in UBC were considered for the soil layers of a foundation and Ramberg-Osgood model was assumed for the nonlinear characteristics of soil layers. Studies on the changes of dynamci stiffnesses and damping rations of surface and embedded foundations depending on foundation size soil layer depth and piles were performed to investigate the effects of the nonlinear soil layer on the horizontal and rotational dynamic stiffnesses and damping ratios of the foundation-soil system According to the study results nonlinear prperties of a soil laryer decreeased horizontal and rotational linear stiffnesses and increased damping ratios largely Effects of foundation size soil layer depth and piles were also significant suggesting the necessity of nonlinear seismic analyses of structures.

  • PDF

Hualien 대형지진시험 모델의 지진응답해석 (Estimation of Seismic Responses of Hualien LSST Model By the Substructure Method of Soil-Structure Inraction Analysis)

  • 조양희;박형기
    • 한국지진공학회논문집
    • /
    • 제1권2호
    • /
    • pp.59-68
    • /
    • 1997
  • 주요구조물의 내진설계를 위한 지진응답은 대상 구조물 하부의 지반상태에 따른 영향 즉, 지반구조물 상호작용영향에 의하여 현저한 차이를 보일 수 있다. 본 논문에서는 지진다발지역인 대만의 유연층상지반상에 건설된 대형지진시험모델을 대상으로 실제지지에 대한 응답을 예측하고, 그 결과를 계측치와 비교, 분석하였다. 지진응답예측을 위한 해석을 위해서는 크기와 특성이 서로 다른 세 개의 실측된 지진운동을 입력운동으로 사용하였으며, 해석방법으로서는 진동수 및 시간영역에서의 집중파라메타모델을 이용하는 부분구조법을 사용하였다. 해석결과의 통해서, 제시된 지반구조물 해석방법이 공학적으로 신뢰할 수 있는 지반구조물 상호 작용시스템의 지진응답을 준다는 사실을 확인하였다. 단, 이를 위해서는 해석시 입력운동의 정의 및 뒷채움재의 모델링 등에 있어서 세심한 주의가 전제되어야 한다는 사실도 확인되었다.

  • PDF

유체-구조물-지반 상호작용을 고려한 유체저장탱크의 3차원 지진해석 (three dimensional seismic analysis of liquid storage tanks considering liquid-structure-soil interaction)

  • 김문겸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.99-106
    • /
    • 1999
  • In this study a base-isolated liquid storage tank subjected to seismic ground motion is numerically simulated on frequency , domain considering three-dimensional liquid-structure-soil interaction. A hybrid formulation which combines the versatility of finite elements for tank structure and the efficiency of boundary elements for liquid and soil region is adopted for efficient modeling. The base-isolation system using the effective stiffness and damping ratio is also included in this formulation. in order to demonstrate the accuracy and validity of the developed solution the numerical results were compared with the reference solutions in each interaction problem. The effects of the liquid filling ratio and the stiffness of base-isolation system on the behavior of the liquid storage tanks are analyzed.

  • PDF

Mitigation of the seismic response of a cable-stayed bridge with soil-structure-interaction effect using tuned mass dampers

  • Kontoni, Denise-Penelope N.;Farghaly, Ahmed Abdelraheem
    • Structural Engineering and Mechanics
    • /
    • 제69권6호
    • /
    • pp.699-712
    • /
    • 2019
  • A cable-stayed bridge (CSB) is one of the most complicated structures, especially when subjected to earthquakes and taking into consideration the effect of soil-structure-interaction (SSI). A CSB of a 500 m mid-span was modeled by the SAP2000 software and was subjected to four different earthquakes. To mitigate the harmful effect of the vibration generated from each earthquake, four mitigation schemes were used and compared with the non-mitigation model to determine the effectiveness of each scheme, when applying on the SSI or fixed CSB models. For earthquake mitigation, tuned mass damper (TMD) systems and spring dampers with different placements were used to help reduce the seismic response of the CBS model. The pylons, the mid-span of the deck and the pylon-deck connections are the best TMDs and spring dampers placements to achieve an effective reduction of the earthquake response on such bridges.