• Title/Summary/Keyword: soil-aggregate

Search Result 219, Processing Time 0.024 seconds

Geotechnical behavior of a beta-1,3/1,6-glucan biopolymer-treated residual soil

  • Chang, Ilhan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.7 no.6
    • /
    • pp.633-647
    • /
    • 2014
  • Biopolymers, polymers produced by living organisms, are used in various fields (e.g., medical, food, cosmetic, medicine) due to their beneficial properties. Recently, biopolymers have been used for control of soil erosion, stabilization of aggregate, and to enhance drilling. However, the inter-particle behavior of such polymers on soil behavior are poorly understood. In this study, an artificial biopolymer (${\beta}$-1,3/1,6-glucan) was used as an engineered soil additive for Korean residual soil (i.e., hwangtoh). The geotechnical behavior of the Korean residual soil, after treatment with ${\beta}$-1,3/1,6-glucan, were measured through a series of laboratory approaches and then analyzed. As the biopolymer content in soil increased, so did its compactibility, Atterberg limits, plasticity index, swelling index, and shear modulus. However, the treatment had no effect on the compressional stiffness of the residual soil, and the polymer induced bio-clogging of the soil's pore spaces while resulting in a decrease in hydraulic conductivity.

폐탄광지역 퇴적물의 중금속 존재형태 및 안정화에 관한 연구

  • Lee Jeong-Ran;Lee Jae-Yeong;Kim Hwi-Jung
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.253-259
    • /
    • 2005
  • Mine is quickly decline, Nowadays, many of abandoned and closed mines. AMD is abandoned surface water by accumulated yellowboy and caused environmental pollution by amount of heavy metals. The aim of this study waste lime was mixed with the sediment to produce an aggregate far the purpose of neutralizing the acidity and stabilization the heavy metal in the aggregate structure .to pozzolan effect. The result of Waste lime and sediment mixed(5%, 10%, 20%)ration by curing days(3, 7, 38days), After 28 curing days as 5% mixed waste lime leaching solution concentration of all heavy metals is satisfied with regulation limit. Also, the result of fractionate heavy metals to stabilization as 28 curing days very decrease exchangeable and reducible type, and then increase carbonate type. With the above results, waste lime the most effective for the sediment treatment and useful for the recycling waste resource.

  • PDF

Effect of EAF dust on the formation of ultra lightweight aggregates by using bottom ash and dredged soil from coal power plant (인공경량골재의 EAF dust 첨가에 따른 초경량화에 관한 연구)

  • Choi, Yun-Jae;Kim, Yoo-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.3
    • /
    • pp.129-135
    • /
    • 2011
  • EAF dust from steel industry used as primary materials for the production of lightweight aggregates. Fe compounds in EAF dust plays an important role in the bloating reaction. This study was conducted to evaluate the feasibility of using bottom ash and dredged soil from coal power plant and EAF dust. The effect of different raw material compositions and sintering temperatures on the lightweight aggregate properties were evaluated. The characteristic of thermal bloating of bottom ash and dredged soil were mainly influenced by ferrous materials. The specific gravity of aggregate was decreased with the addition of EAF dust and kerosene was reduced sintering temperature on the bloating formation. Lightweight aggregate containing 10% EAF dust having apparent density under 1.0 g/$cm^3$ were produced at $1150{\sim}1200^{\circ}C$.

Geotechnical Considerations in Tripoli Sub-region, Libya (리비아 트리폴리 지역에서의 지반공학적 고찰)

  • 강병무
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.2-10
    • /
    • 1991
  • Some geotechnical considerations might be suggested to the construction performance from the school and the housing projects in Tripoli sub-region, Libya. The subsurface informations were compiled from the site investigation reports, for which more than 700 borings and lots of laboratory test had been conducted from 1984 to 1986. Most subsurface of 10 meter depth in the Jafara plain consists of medium dense silty sand. Some ground in the plain have poor top soil with interbedded calcarenite or limestone. The shallow subsurface is found to be very poor soil in the southern mountain range. Weak soil is hardly found except in the sabkha area. In general, natural silty sand layer may have a presumed bearing capacity of more than 150kN/$m^2$, where spread or strip footing is applied. Proper fine aggregate and natural coarse one are restricted in Tripoli sub-region. Coarse aggregate is generally supplied from the dolomite quarry.

  • PDF

콘크리트 재생 골재를 이용한 산성광산배수 중화처리

  • 김종범;오재일;정시열
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.71-74
    • /
    • 2001
  • AMB(Acid Mine Drainage), characterized as high concentration of metal & sulfate ions and low pH(2.0~4.0), is the world-wide problem wherever there is or has been mining activities. Though limestone has been generally used to neutralize AMD, There are metal hydroxide precipitation on the surface of limestone and excessive alkalinity formation which exceeds the regulation. In this research, concrete-recycled fine aggregate is selected for alternative neutralizing agent. Because fine recycled aggregate had more ANP than others in the preliminary research, the purpose of this research is to apply fine aggregate for AMD neutralization. Three columns packed with fine aggregates(2.5mm$O_3$) of it is calculated as 0.09(C-1), approximated 10% purity of limestone. Comparing with values of other columns(C-2: 0.01 and C-3: 0.01), there is variation of porosity and residence time induced from the precipitation of metal hydroxide. Consequently, 8 hours of HRT is enough to create adequate alkalinity and the function which could expect the variation of porosity(n) and residence time( $t_{R}$) should be applied to develop design function.lied to develop design function.

  • PDF

A Basic Study on the Recycling of Dredged Sewage Sediment (하수도 준설토 재활용에 관한 기초 연구)

  • Kim, Hong Min;Choi, Yun Jeong;Yoon, Seok-Pyo;Kim, Jun Kyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.3
    • /
    • pp.33-37
    • /
    • 2018
  • In order to recycle sewage dredging soil, we analyzed particle size distribution and organic content of dredged sewage sediments. Based on this, it was determined that particles with relatively low organic content of 1.0 mm or more could be recycled as fine aggregate. Although it was inorganic at the size of 5 mm or more, it contained a number of foreign substances other than fine aggregate, which were needed to be removed with a sieve. Since there are volatile suspended solids between 1.0 and 5.0 mm size, they were removed by means of flotation. Fine aggregate was obtained from dredging soil by screening followed with flotation method, and the proportion of fine aggregate obtained in this study was around 38 %.

Investigation on the Effect of Stress Waves on Soil Flushing (토양세척에 있어서 탄성파의 효과에 관한 연구)

  • 김영욱;김지형;이인모
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.37-40
    • /
    • 2000
  • Acoustically enhanced soil flushing method is a newly developed in-situ remediation technique. However, there has not been an analytical method that can be used to evaluate the effectiveness of ultrasonic wave under different conditions. This study was undertaken to investigate the degree of enhancement in contaminant removal due to ultrasonic energy on the soil flushing method. The test conditions included different levels of ultrasonic power and hydraulic gradient. The test soils were Ottawa sand, a fine aggregate, and a natural soil, and the surrogate contaminant was a Crisco Vegetable Oil. The test results showed that sonication could increase contaminant removal significantly. Increasing sonication power increased pollutant removal. The faster the flow is, the smaller the degree of enhancement will be. The pollutants in dense soils are more difficult to be removed than in loose soils.

  • PDF

Changes in the Soil Physical Properties of Vineyard Converted from Paddy Field (논에서 전환한 포도원의 토양물리적 특성변화)

  • Yun, Eul-Soo;Jung, Ki-Youl;Park, Ki-Do;Ko, Jee-Yeon;Lee, Jae-Saeng;Park, Sung-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.3
    • /
    • pp.145-151
    • /
    • 2009
  • This study was conducted to develop rational soil management and enhance the productivity of lands converted from paddy soils. Specifically, the changes in the soil physical properties brought about by the change in land usage from paddy soil were evaluated. This was carried out from 1999 to 2001 at 50 site in large-scale converted paddy fields of Kimcheon, Youngcheon, Gyeongsan and Milyang in the Youngnam region, categorized according to soil texture and drainage class. The ridge height of converted paddy soils was higher in coarse-textured and poorly-drained soils than in fine-textured and well-drained soils. The gray color of the surface soil was of lesser degree in converted soils than paddy soils and more notable in welldrained soils. The porosity ratio and the formation of aggregate structure were higher, and the appearance of soil mottling was deeper in converted paddy fields than in paddy soils. The glaying layer "g" of surface soil degraded with time. The porosity and amount of water stable aggregate was found to increase with time after conversion. The penetration resistance of the converted paddy soil was lower and deeper with time after conversion. The soil aeration of the converted paddy soil was lower in sandy loam than in loamy soil. Furthermore, soil aeration was influenced by ridge height and drainage class in poorly-drained soils.

Comparative Analyses for the Properties of Surface Soils from Various Land Uses in an Urban Watershed and Implication for Soil Conservation (도시 유역 내에서 토지이용에 따른 표토의 특성 비교 및 표토 보전을 위한 시사점)

  • Park, Eun-Jin;Kang, Kyu-Yi
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.3
    • /
    • pp.106-115
    • /
    • 2009
  • Knowledge about how to stabilize soil structure is essential to conserve soil systems and maintain various biogeochemical processes through soil. In urban area, soil structural systems are degraded with inappropriate management and land use and become vulnerable to erosion. We analyzed the structural changes of surface soils with different land uses, i.e., forests, parks, roadside green area, riparian area, and farmlands (soybean fields), in the Anyang Stream Watershed in order to find the factors influencing the stability of soil structure and the implication for better management of surface soil. Soil organic matter contents of other land use soils were only 18~52% of that in forest soils. Soil organic matter increased the stability of soil aggregates in the order of soybean fields < roadsides < riparian < parks < forests and also reduced soil bulk density (increased porosity). The lowest stability of soybean field soils was attributed to the often disturbance like tillage and it was considered that higher stability of park soils comparing to other land use soils except forests was owing to the covering of soil surface with grass. These results suggest that supply of soil organic matter and protection of soil surface with covering materials are very important to increase porosity and stability of soil structure.

Analysis of Settlement Characteristics and Strength of Cement Mixing Ratio for a Backfill Material at a Railway Abutment (철도교대 뒤채움재료의 시멘트 혼합 비율에 따른 강도 및 침하특성 분석)

  • Yang, Sang-Beom;Choi, Chan-Yong;Kim, Nak-Kyung;Kim, Tae-Kyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.9
    • /
    • pp.29-36
    • /
    • 2016
  • Backfill materials of rail abutment were commonly composed with cement treated aggregate, general aggregate and soil. The friction angle of cement treated aggregate increased up to $40^{\circ}$ or more due to strength enhancement. However, $30^{\circ}{\sim}35^{\circ}$ of friction angle was typically applied for in-situ condition. This phenomenon could cause over-designing, therefore, it is essential to determine reasonable material properties of cemented treated aggregate. In this study, a series of CBR tests and circular model tests have been conducted for cement treated aggregate, while changing cement mixing ratio. Based on test results, characteristics of settlement and strength have been analyzed quantitatively. The settlement of cement treated aggregate decreased with the number of cyclic loading and aging period. In addition, The strength increment ratio in CBR test increased up to 13~16 times at 28 days aging.