• Title/Summary/Keyword: soil variables

Search Result 526, Processing Time 0.024 seconds

Application Method of Satellite Image and GIS for Suitability of Black Locust Forest as Honey Plant Area (아까시나무 밀원식물단지 적지 선정을 위한 위성영상과 GIS의 응용기법)

  • Jo, Myung-Hee;Kim, Joon-Bum;Jo, Yun-Won;Baek, Seong-Ryul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.2
    • /
    • pp.27-37
    • /
    • 2001
  • Using satellite image and GIS, spatial distribution characteristics of black locust forest as honey plant area was identified and analyzed. Upon the result, the most suitable area for black locust forest was selected through the integration analysis of transparent overlay. The variables used for spatial analysis such as topography(elevation, aspect, slope), soil, drainage, distance from urban area, land use, meteorological elements were considered. Based on the suitability analysis, it was clarified that the integration of linear and factor combination technique is greatly efficient method for the most suitable area. In addition, Gokung, Imgo, Chungtong, Hwanam area were shown to be suitable in Young-chun Area. As the result of suitability analysis for honey plant area of black locust in Young-chun using satellite image and GIS, the present portion of potential distribution area was produced about 42.53%. The portion of most suitable area for honey plant area of black locust was about 26.77%. Finally, the total area for honey plant area of black locust in Young-chun came up to $15.79km^2$. Additionally, satellite image and GIS were expected to be significant tools for suitability analysis of honey plant complex area.

  • PDF

A Three-Dimensiomal Slope Stability Analysis in Probabilistic Solution (3차원(次元) 사면(斜面) 안정해석(安定解析)에 관한 확률론적(確率論的) 연구(研究))

  • Kim, Young Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.75-83
    • /
    • 1984
  • The probability of failure is used to analyze the reliability of three dimensional slope failure, instead of conventional factor of safety. The strength parameters are assumed to be normal variated and beta variated. These are interval estimated under the specified confidence level and maximum likelihood estimation. The pseudonormal and beta random variables are generated using the uniform probability transformation method according to central limit theorem and rejection method. By means of a Monte-Carlo Simulation, the probability of failure is defined as; $P_f=M/N$ N: Total number of trials M: Total number of failures Some of the conclusions derived. from the case study include; 1. Three dimensional factors of safety are generally much higher than 2-D factors of safety. However situations appear to exist where the 3-D factor of safety can be lower than the 2-D factor of safety. 2. The $F_3/F_2$ ratio appears to be quite sensitive to c and ${\phi}$ and to the shape of the 3-D shear surface and the slope but not to be to the unit weight of soil. 3. From the two models (normal, beta) considered for the distribution of the factor of safety, the beta distribution generally provides lager than normal distribution. 4. Results obtained using the beta and normal models are presented in a nomgraph relating slope height and slop angle to probability of failure.

  • PDF

A Research on Diagnosis of Institutional Problem and Improvement Plan for Management in Coastal Dredged Sediment - Case Study of Masan Bay - (연안준설토 관리의 제도적 문제점 진단 및 개선방안 연구 - 마산만 사례를 중심으로 -)

  • Yi, Yongmin;Oh, Hyuntaik;Lee, Dae In;Kim, Gui Young;Jeon, Kyeong Am;Kim, Hye Jin
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.5
    • /
    • pp.444-455
    • /
    • 2015
  • In relation to the utilization and disposal of dredged sediment caused by coastal dredging project, we diagnosed the status of legal standard and system, and proposed the improvement plan. Dredging costal sediment distinguished the usage and the disposal by the Standard for the Beneficial Usage of Dredged Sediment. The site where disposal has been completed could be used as a site for developmental project. In case of the usage of dredged sediment for reclamation, we found that the adaptation of the Standard for Beneficial Usage of Dredged Sediment is appropriate for reclamation considering the characteristic of soil, the differences of variables, and the distinction of standard analysis methods. The current the Standard for Beneficial Usage of Dredged Sediment requires the improvement with the usage of dredging coastal sediment in the following. First, the Standard needs to include the standard of the discrimination for reclamation. Second, the current Standard is necessary to be divided by two levels, it needs to be mitigated considering human health risk. Third, it is necessary to consider both the marine environmental impact assessment and mitigation plan near coastal dredging area.

Development of a Chinese cabbage model using Microsoft Excel/VBA (엑셀/VBA를 이용한 배추 모형 제작)

  • Moon, Kyung Hwan;Song, Eun Young;Wi, Seung Hwan;Oh, Sooja
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.228-232
    • /
    • 2018
  • Process-based crop models have been used to assess the impact of climate change on crop production. These models are implemented in procedural or object oriented computer programming languages including FORTRAN, C++, Delphi, Java, which have a stiff learning curve. The requirement for a high level of computer programming is one of barriers for efforts to develop and improve crop models based on biophysical process. In this study, we attempted to develop a Chinese cabbage model using Microsoft Excel with Visual Basic for Application (VBA), which would be easy enough for most agricultural scientists to develop a simple model for crop growth simulation. Results from Soil-Plant-Atmosphere-Research (SPAR) experiments under six temperature conditions were used to determine parameters of the Chinese cabbage model. During a plant growing season in SPAR chambers, numbers of leaves, leaf areas, growth rate of plants were measured six times. Leaf photosynthesis was also measured using LI-6400 Potable Photosynthesis System. Farquhar, von Caemmerer, and Berry (FvCB) model was used to simulate a leaf-level photosynthesis process. A sun/shade model was used to scale up to canopy-level photosynthesis. An Excel add-in, which is a small VBA program to assist crop modeling, was used to implement a Chinese cabbage model under the environment of Excel organizing all of equations into a single set of crop model. The model was able to simulate hourly changes in photosynthesis, growth rate, and other physiological variables using meteorological input data. Estimates and measurements of dry weight obtained from six SPAR chambers were linearly related ($R^2=0.985$). This result indicated that the Excel/VBA can be widely used for many crop scientists to develop crop models.

A System Displaying Real-time Meteorological Data Obtained from the Automated Observation Network for Verifying the Early Warning System for Agrometeorological Hazard (조기경보시스템 검증을 위한 무인기상관측망 실황자료 표출 시스템)

  • Kim, Dae-Jun;Park, Joo-Hyeon;Kim, Soo-Ock;Kim, Jin-Hee;Kim, Yongseok;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.117-127
    • /
    • 2020
  • The Early Warning System for agrometeorological hazard of the Rural Development Administration (Korea) forecasts detailed weather for each farm based on the meteorological information provided by the Korea Meteorological Administration, and estimates the growth of crops and predicts a meteorological hazard that can occur during the growing period by using the estimated detailed meteorological information. For verification of early warning system, automated weather observation network was constructed in the study area. Moreover, a real-time web display system was built to deliver near real-time weather data collected from the observation network. The meteorological observation system collected diverse meteorological variables including temperature, humidity, solar radiation, rainfall, soil moisture, sunshine duration, wind velocity, and wind direction. These elements were collected every minute and transmitted to the server every ten minutes. The data display system is composed of three phases: the first phase builds a database of meteorological data collected from the meteorological observation system every minute; the second phase statistically analyzes the collected meteorological data at ten-minutes, one-hour, or one-day time step; and the third phase displays the collected and analyzed meteorological data on the web. The meteorological data collected in the database can be inquired through the webpage for all data points or one data point in the unit of one minute, ten minutes, one hour, or one day. Moreover, the data can be downloaded in CSV format.

An Experimental Study on the Bolted Connection Fatigue Capacity of Corrugated Steel Plates (파형강판 볼트 이음부의 피로성능에 관한 실험적 연구)

  • Oh, Hong-Seob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.54-63
    • /
    • 2014
  • Corrugated steel plate structure, which is built by assembling corrugated steel plate segments with bolts on site and filling the surroundings with quality soil, is widely used for buried structures as a eco-corridors, small bridges, and closed conduits. This experimental study is dealt with the static and fatigue performance of bolt connected corrugated steel plates under flexural loading. The experimental variables to verify the fatigue performance are bolt diameters and detailing of connection such as washer and the corrugation dimension of specimens has a $400{\times}150$ mm. The experimental ultimate strength of specimens under static loading was higher than the theoretical strength and all specimen failed by a bearing and tearing failure of bolt hole of upper plate. Therefore, a fatigue tests of specimens had 6.0mm and 7.0mm thickness was conducted in which the load range was up to 209kN and 516kN, respectively. From the fatigue test, failure patterns are changed from plate bearing and tearing which is a typical failure pattern of static failure to a bearing failure of plate and shear failure of bolt, and experimental fatigue limit at $2{\times}10^6$cycles is about 85MPa.

Relationship between Hydraulic Conductivity and Electrical Conductivity in Sands (사질토의 투수계수와 전기전도도 간의 상관관계)

  • Kim, Jinwook;Choo, Hyunwook;Lee, Changho;Lee, Woojin
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.6
    • /
    • pp.45-58
    • /
    • 2015
  • The aim of this study is to suggest a semi-empirical equation for estimating the hydraulic conductivity of sands using geoelectrical measurements technique. The suggested formula is based on the original Kozeny-Carman equation; therefore varying factors affecting the Kozeny-Carman equation were selected as the testing variables, and six different sands with varying particle sizes and particle shapes were used as the testing materials in this study. To measure both hydraulic and electrical conductivities, a series of constant head permeameter tests equipped with the four electrodes conductivity probe was conducted. Test results reveal that the effects of both pore water conductivity and flow rate in relation between hydraulic conductivity and formation factor (=pore water conductivity / measused conductivity of soil) of tested materials are negligible. However, because the variations of hydraulic conductivity of the tested sands according to particle sizes are significant, the estimated hydraulic conductivity using the formation factor varies with particle sizes. The overall comparison between the measured hydraulic conductivity and the estimated hydraulic conductivity using the suggested formula shows a good agreement, and the variation of hydraulic conductivity with varying Archie's m exponents is smaller compared with varying porosities.

Evaluation of a Hydro-ecologic Model, RHESSys (Regional Hydro-Ecologic Simulation System): Parameterization and Application at two Complex Terrain Watersheds (수문생태모형 RHESSys의 평가: 두 복잡지형 유역에서의 모수화와 적용)

  • Lee, Bo-Ra;Kang, Sin-Kyu;Kim, Eun-Sook;Hwang, Tae-Hee;Lim, Jong-Hwan;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.4
    • /
    • pp.247-259
    • /
    • 2007
  • In this study, we examined the flux of carbon and water using an eco-hydrological model, Regional Hydro-Ecologic Simulation System (RHESSys). Our purposes were to develop a set of parameters optimized for a well-designed experimental watershed (Gwangneung Research Watershed, GN) and then, to test suitability of the parameters for predicting carbon and water fluxes of other watershed with different regimes of climate, topography, and vegetation structure (i.e Gangseonry Watershed in Mt. Jumbong, GS). Field datasets of stream flow, soil water content (SWC), and wood biomass product (WBP) were utilized for model parameterization and validation. After laborious parameterization processes, RHESSys was validated with the field observations from the GN watershed. The parameter set identified at the GN watershed was then applied to the GS watershed in Mt. Jumbong, which resulted in good agreement for SWC but poor predictability for WBP. Our study showed that RHESSys simulated reliable SWC at the GS by adjusting site-specific porosity only. In contrast, vegetation productivity would require more rigorous site-specific parameterization and hence, further study is necessary to identify primary field ecophysiological variables for enhancing model parameterization and application to multiple watersheds.

Projection of Forest Vegetation Change by Applying Future Climate Change Scenario MIROC3.2 A1B (미래 기후변화 시나리오 MIROC3.2 A1B에 따른 우리나라 산림식생분포의 변화 전망)

  • Shin, Hyung-Jin;Park, Geun-Ae;Park, Min-Ji;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.64-75
    • /
    • 2012
  • To predict the future distribution of forest vegetation, the present forest stand distributions of South Korea were represented by multinomial logit model with the following environmental variables: summer average precipitation, the coldest month average temperature, elevation, degree of base saturation, and soil organic matter. The future forest community was predicted by applying the MIROC3.2 hires A1B scenario. The future climate data were downscaled by statistically method. The coldest month average temperature increased $4.4^{\circ}C$, $6.0^{\circ}C$, and $9.4^{\circ}C$, and 3 months average precipitation changed -1.2%, 5.7%, and 5.3% for 2020s, 2050s, and 2080s respectively. For the projected summer precipitation and the coldest temperature, the future deciduous and mixed forests in the study area increased 56.9% and 8.3% and the coniferous forest decreased 11.2% in 2080s based on present.

Stochastic finite element based seismic analysis of framed structures with open-storey

  • Manjuprasad, M.;Gopalakrishnan, S.;Rao, K. Balaji
    • Structural Engineering and Mechanics
    • /
    • v.15 no.4
    • /
    • pp.381-394
    • /
    • 2003
  • While constructing multistorey buildings with reinforced concrete framed structures it is a common practice to provide parking space for vehicles at the ground floor level. This floor will generally consist of open frames without any infilled walls and is called an open-storey. From a post disaster damage survey carried out, it was noticed that during the January 26, 2001 Bhuj (Gujarat, India) earthquake, a large number of reinforced concrete framed buildings with open-storey at ground floor level, suffered extensive damage and in some cases catastrophic collapse. This has brought into sharp focus the need to carry out systematic studies on the seismic vulnerability of such buildings. Determination of vulnerability requires realistic structural response estimations taking into account the stochasticity in the loading and the system parameters. The stochastic finite element method can be effectively used to model the random fields while carrying out such studies. This paper presents the details of stochastic finite element analysis of a five-storey three-bay reinforced concrete framed structure with open-storey subjected to standard seismic excitation. In the present study, only the stochasticity in the system parameters is considered. The stochastic finite element method used for carrying out the analysis is based on perturbation technique. Each random field representing the stochastic geometry/material property is discretised into correlated random variables using spatial averaging technique. The uncertainties in geometry and material properties are modelled using the first two moments of the corresponding parameters. In evaluating the stochastic response, the cross-sectional area and Young' modulus are considered as independent random fields. To study the influence of correlation length of random fields, different correlation lengths are considered for random field discretisation. The spatial expectations and covariances for displacement response at any time instant are obtained as the output. The effect of open-storey is modelled by suitably considering the stiffness of infilled walls in the upper storey using cross bracing. In order to account for changes in soil conditions during strong motion earthquakes, both fixed and hinged supports are considered. The results of the stochastic finite element based seismic analysis of reinforced concrete framed structures reported in this paper demonstrate the importance of considering the effect of open-storey with appropriate support conditions to estimate the realistic response of buildings subjected to earthquakes.