• Title/Summary/Keyword: soil total carbon

Search Result 372, Processing Time 0.02 seconds

Carbon Storage of Exotic Slash Pine Plantations in Subtropical China

  • Jin, Ling;Liu, Yuanqiu;Ning, Jinkui;Liu, Liangying;Li, Xiaodong
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.3
    • /
    • pp.150-158
    • /
    • 2019
  • Exotic conifer trees have been extensively planted in southern China because of their high apparent growth and yield. These fast-growing plantations are expected to persist as a considerable potential for temporary and long-term carbon sink to offset greenhouse gas emissions. However, information on the carbon storage across different age ranges in exotic pine plantations is often lacking. We first estimated the ecosystem carbon storage across different age ranges of exotic pine plantations in China by quantifying above- and below-ground ecosystem carbon pools. The carbon storage of each tree component of exotic pine (Pinus elliottii) increased significantly with increasing age in Duchang and Yiyang areas. The stem carbon storage except <10 years in Ji'an areas was the largest component among all other components, which accounts for about 50% of the total carbon storage followed by roots (~28%), branches (~18%), and foliage (~9%). The mean total tree carbon storage of slash pine plantations for <10, 10-20 and 20-30 years across three study areas was 3.69, 13.91 and $20.57Mg\;ha^{-1}$, respectively. The carbon stocks in understory and forest floor were age-independent. Total tree and soil were two dominant carbon pools in slash pine plantations at all age sequences. The carbon contribution of aboveground ecosystem increased with increasing age, while that of belowground ecosystem declined. The mean total ecosystem carbon storage of slash pine plantations for <10, 10-20 and 20-30 years across China was 30.26, 98.66 and $98.89Mg\;ha^{-1}$, respectively. Although subtropical climate in China was suitable for slash pine growth, the mean total carbon stocks in slash pine plantations at all age sequences from China were lower than that values reported in American slash pine plantations.

Biochemical characterization of cotton stalks biochar suggests its role in soil as amendment and decontamination

  • Younis, Uzma;Athar, Mohammad;Malik, Saeed Ahmad;Bokhari, Tasveer Zahra;Shah, M. Hasnain Raza
    • Advances in environmental research
    • /
    • v.6 no.2
    • /
    • pp.127-137
    • /
    • 2017
  • Cotton is the major fiber crop in Pakistan that accounts for 2% of total national gross domestic product (GDP). After picking of cotton, the dry stalks are major organic waste that has no fate except burning to cook food in villages. Present research focuses use of cotton stalks as feedstock for biochar production, its characterization and effects on soil characteristics. Dry cotton stalks collected from agricultural field of Bahauddin Zakariya University, Multan, Pakistan were combusted under anaerobic conditions at $450^{\circ}C$. The physicochemical analysis of biochar and cotton stalks show higher values of % total carbon, phosphorus and potassium concentrations in biochar as compared to cotton stalks. The concentration of nitrogen was decreased in biochar. Similarly biochar had greater values of fixed carbon that suggest its role for carbon sequestration and as a soil amendment. The fourier transformation infrared spectroscopic spectra (FTIR) of cotton stalks and biochar exposed more acidic groups in biochar as compared to cotton stalks. The newly developed functional groups in biochar have vital role in increasing surface properties, cation exchange capacity, and water holding capacity, and are responsible for heavy metal remediation in contaminated soil. In a further test, results show increase in the water holding capacity and nutrient retention by a sandy soil amended with biochar. It is concluded that cotton stalks can be effectively used to prepare biochar.

Assessment of Carbon Stock in Chronosequence Rehabilitated Tropical Forest Stands in Malaysia

  • Kueh, Roland Jui Heng;Majid, Nik Muhamad;Ahmed, Osumanu Haruna;Gandaseca, Seca
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.3
    • /
    • pp.302-310
    • /
    • 2016
  • The loss and degradation in tropical forest region are some of the current global concern. Hence, these issues elevated the role of rehabilitated forests in providing ecological products and services. The information on the carbon stock is important in relation to global carbon and biomass use, but lacking from the tropical region. This paper reports the assessment of tree and soil carbon stock in a chronosequence rehabilitated tropical forest stands in Malaysia. The study site was at the UPM-Mitsubishi Forest Rehabilitation Project, UPMKB. $20{\times}20m$ plot was established each and assessed in 2009 at 1-, 10- and 19-year-old sites while an adjacent ${\pm}23-year-old$ natural regenerating secondary forest plot was established for comparison. The overall total carbon stock was in the order of 19-year-old>${\pm}23-year-old$>10-year-old>1-year-old. When forest carbon stock is low, the soil component plays an important role in the carbon storage. The forest carbon recovery is crucial to increase soil carbon stock. The variations in the carbon stock showed the different stages of the forest recovery. Species survived after 19-years of planting are potential species for carbon sequestration activities in rehabilitated forest. Human intervention in rehabilitating degraded forest areas through tree planting initiatives is crucial towards recovering the forest ecological role especially in forest carbon stock capacity.

Characteristics of Nitrogen and Carbon Isotopes on Organic Matter and River Sediments of Toil Stream in Yeongju Dam Basin (영주댐 유역 토일천 유입 유기물 및 하천 퇴적물에 대한 질소와 탄소 동위원소 특성 연구)

  • Kang, Han;Song, Hye Won;Kim, Young Hun;Kim, Jeong Jin
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.439-445
    • /
    • 2022
  • Organic pollutants that contained in stream sediments have origins of mountain soil in natural and cattle manure in human activity. Nitrogen and carbon isotope analysis for mountain soil, cattle manure and stream sediment were performed for contribution evaluation of organic pollutants in Toil stream of Yeongju dam basin. Average carbon isotope ratio(δ13C) is -25.17‰, -22.34‰, and -26.39‰ for river sediments, cattle manure and mountain soil, respectively. Result of carbon isotope analysis suggests that river sediments are more affected by acid soils. Average value of the nitrogen isotope ratio (δ15N) is 9.46% for river sediment, 1.99% for mountain soil, and 19.53% for cattle manure. Result of nitrogen isotopic analysis show that contribution of cattle mature is slightly higher than that of mountain soil in Toil stream sediments.

Global Carbon Cycle Under the IPCC Emissions Scenarios (IPCC 배출시나리오에 따른 지구 규모의 탄소 이동 연구)

  • Kwon, O-Yul
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.287-297
    • /
    • 2007
  • Increasing carbon dioxide emissions from fossil fuel use and land-use change has been perturbing the balanced global carbon cycle and changing the carbon distribution among the atmosphere, the terrestrial biosphere, the soil, and the ocean. SGCM(Simple Global Carbon Model) was used to simulate global carbon cycle for the IPCC emissions scenarios, which was six future carbon dioxide emissions from fossil fuel use and land-use change set by IPCC(Intergovernmental Panel on Climate Change). Atmospheric $CO_2$ concentrations for four scenarios were simulated to continuously increase to $600{\sim}1050ppm$ by the year 2100, while those for the other two scenarios to stabilize at $400{\sim}600ppm$. The characteristics of these two $CO_2$-stabilized scenarios are to suppress emissions below $12{\sim}13$ Gt C/yr by tile year 2050 and then to decrease emissions up to 5 Gt C/yr by the year 2100, which is lower than the current emissions of $6.3{\pm}0.4$ Gt C/yr. The amount of carbon in the atmosphere was simulated to continuously increase for four scenarios, while to increase by the year $2050{\sim}2070$ and then decrease by the year 2100 for the other two scenarios which were $CO_2$-stabilized scenarios. Even though the six emission scenarios showed different simulation results, overall patterns were such similar that the amount of carbon was in the terrestrial biosphere to decrease first several decades and then increase, while in the soil and the ocean to continuously increase. The ratio of carbon partitioning to tile atmosphere for the accumulated total emissions was higher for tile emission scenario having higher atmospheric $CO_2$, however that was decreasing as time elapsed. The terrestrial biosphere and the soil showed reverse pattern to the atmosphere.

Analyzing the Influence of Biomass and Vegetation Type to Soil Organic Carbon - Study on Seoseoul Lake Park and Yangjae Citizen's Forest - (바이오매스량과 식생구조가 토양 탄소함유량에 미치는 영향 분석 - 서서울호수공원과 양재 시민의 숲을 대상으로 -)

  • Tanaka, Riwako;Kim, Yoon-Jung;Ryoo, Hee-Kyung;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.1
    • /
    • pp.123-134
    • /
    • 2014
  • Identification of methods to optimize the growth of a plant community, including the capacity of the soil to further sequester carbon, is important in urban design and planning. In this study, to construct and manage an urban park to mitigate carbon emissions, soil organic carbon of varying biomass, different park construction times, and a range of vegetation types were analyzed by measuring aboveground and belowground carbon in Seoseoul Lake Park and Yangjae Citizen's Forest. The urban parks were constructed during different periods; Seoseoul Lake Park was constructed in 2009, whereas Yangjae Citizen's Forest was constructed in 1986. To identify the differences in soil organic carbon in various plant communities and soil types, above and belowground carbon were measured based on biomass, as well as the physical and chemical features of the soil. Allometric equations were used to measure biomass. Soil total organic carbon (TOC) and chemical properties such as pH, cation exchange capacity (CEC), total nitrogen (TN), and soil microbes were analyzed. The analysis results show that the biomass of the Yangjae Citizen's Forest was higher than that of the Seoseoul Lake Park, indicating that older park has higher biomass. On the other hand, TOC was lower in the Yangjae Citizen's Forest than in the Seoseoul Lake Park; air pollution and acid rain probably changed the acidity of the soil in the Yangjae Citizen's Forest. Furthermore, TOC was higher in mono-layered plantation area compared to that in multi-layered plantation area. Improving the soil texture would, in the long term, result in better vegetation growth. To improve the soil texture of an urban park, park management, including pH control by using lime fertilization, soil compaction control, and leaving litter for soil nutrition is necessary.

Carbon Stocks in Tree Biomass and Soils of Quercus acutissima, Q. mongolica, Q. serrata, and Q. variabilis stands (상수리나무, 신갈나무, 졸참나무, 굴참나무 임분의 임목 바이오매스와 토양 탄소 저장량)

  • Lee, Sang Tae;Chung, Sang Hoon;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.365-373
    • /
    • 2022
  • We compared carbon stocks in tree biomass and soils of Quercus acutissima, Q. mongolica, Q. serrata, and Q. variabilis stands. A total of 531 plots (Q. acutissima: 110 plots, Q. mongolica: 177 plots, Q. serrata: 96 plots, Q. variabilis: 148 plots) were examined between 2016 and 2021 to determine the tree biomass and soil carbon stocks throughout the country. The carbon stocks of tree biomass were significantly higher in Q. mongolica (mean stand age, 57 years, 144.9 Mg C ha-1) than in Q. variabilis (mean stand age, 43 years, 123.7 Mg C ha-1), Q. serrata (mean stand age, 43 years, 120.1 Mg C ha-1), and Q. acutissima (mean stand age, 36 years, 113.2 Mg C ha-1) stands. The soil carbon concentration was significantly higher in Q. mongolica (A: 43.1 mg C g-1) than in Q. serrata (31.0 mg C g-1), Q. variabilis (25.31 mg C g-1), and Q. acutissima (24.4 mg C g-1) stands. The soil carbon stocks were significantly higher in Q. mongolica (116.8 Mg C ha-1) than in Q. acutissima (49.3 Mg C ha-1) stands. Total carbon stocks of tree biomass and soil were highest in Q. mongolica (262 Mg C ha-1), followed by Q. serrata (218 Mg C ha-1), Q. variabilis (211 Mg C ha-1), and Q. acutissima (163 Mg C ha-1) stands. Multiple linear regressions were performed to estimate the total carbon stocks of the four Quercus spp., and results showed that total carbon stocks increased with increasing elevation, mean diameter at breast height, and basal areas. Basal area and elevation of Quercus spp. stands were important explanatory variables based on multiple linear regressions for estimating carbon stocks.

Performance of Night Soil Treatment Plant using B3(Bio-Best-Bacillus) System (B3공법을 이용한 분뇨처리시설 처리효율에 관한 연구)

  • Seo, Yun-Ha;Lee, Jung-Bong;Choi, Sung-Yong;Kim, Deug-Ho;Kim, Jin-Hwan;Byeun, Jeung-Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.407-412
    • /
    • 2010
  • The purpose of this study was to investigate removal efficiencies of contaminants in night soil treatment plant using the B3 system. The samples were collected from retaining tank and settlement tank in Yechon night soil plant. We experimented concentrations of BOD, COD, SS, TN and TP. Concentration data were processed using removal efficiencies by season and correlation analysis with pilot running parameters. Removal efficiencies of total organic carbon was over 96%, TN was 98% during summer, 80.9% during winter. In the case of TP, the highest removal efficiencies was 94.1% during fall and the lowest removal efficiencies was 82% during spring. Results of correlation analysis showed two positive correlation groups and one negative group. Positive correlations were among temperature, BOD and TN. The others were pH, BOD, COD, SS, TN and TP. Negative correlation were among MLSS, BOD, COD, SS, TN, TP.

The Relationship between Microbial Characteristics and Glomalin Concentrations of Controlled Horticultural Soils in Gyeongnam Province

  • Kim, Min Keun;Ok, Yong Sik;Heo, Jae-Young;Choi, Si-Lim;Lee, Sang-Dae;Shin, Hyun-Yul;Kim, Je-Hong;Kim, Hye Ran;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.2
    • /
    • pp.107-112
    • /
    • 2014
  • Glomalin has been suggested as an enhancer for soil stability by promoting the aggregation. In this study, we examined the concentrations of glomalin and microbial characteristics in 25 controlled horticultural soils sampled from Gyeongnam Province. Total glomalin had a significant positive correlation with soil organic matter (p < 0.01), soil microbial biomass carbon (p < 0.05), and dehydrogenase activity (p < 0.05) in controlled horticultural soils. In addition, the total glomalin had a significant positive correlation with concentrations of total fatty acid methyl esters, Gram-negative and Gram-positive bacteria, fungi, and arbuscular mycorrhizal fungi in controlled horticultural soils (p < 0.001). In conclusion, the concentration of total glomalin could be an indicator of microbial biomass richness for sustainable agriculture in controlled horticultural soils.

Aboveground and Soil Carbon Storages in Quercus mongolica and Quercus variabilis Natural Forest Ecosystems in Chungju (충주지역(忠州地域)의 신갈나무와 굴참나무 천연림(天然林) 생태계(生態系)의 지상부(地上部) 및 토양(土壤) 중(中) 탄소고정(炭素固定)에 관(關)한 연구(硏究))

  • Park, Gwan-Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.1
    • /
    • pp.93-100
    • /
    • 1999
  • This study has been carried out to estimate aboveground and soil carbon contents in an average 39-year-old Quercus mongolica and 40-year-old Quercus variabilis stands in Chungju, Chungbuk. Ten sample trees were cut in each forest and soil samples were collected. Aboveground carbon content was estimated by the equation model $Wt=aD^b$ where Wt is oven-dry weight in kg and D is DBH in cm. Total aboveground carbon content was 48.85tonC/ha in Quercus mongolica stand and 57.49tonC/ha in Quercus variabilis stand. The proportion of each tree component to total aboveground carbon content was high in order of bolewood, branches, bolebark, and leaves in the two forests. Aboveground net primary production was estimated at 5.88tonC/ha in Quercus mongolica stand and 5.12tonC/ha in Quercus variabilis stand. Soil carbon content was 67.0tonC/ha in Quercus mongolica stand, 67.8tonC/ha in Quercus variabilis stand, and 54.7tonC/ha in Pinus densiflora stand. There was no significant difference in soil carbon content among the three forests.

  • PDF