• 제목/요약/키워드: soil thickness

검색결과 567건 처리시간 0.025초

인천 소래 간석지내 두개의 칠면초 ( Suadeda japonica ) 개체군간의 차이에 관하여 (Difference of Suaeda japonica Populations from two Different Habitats in Sorae, Incheon, Korea)

  • Lee, Kun-Seop;Oh, Kye-Chil
    • The Korean Journal of Ecology
    • /
    • 제12권3호
    • /
    • pp.133-144
    • /
    • 1989
  • The morphology and flowering time of two Suaeda japonica populations from different habitats, the creek and the bank of the mudflat in Sorae, were surveyed. And standard transplantation and reciprocal transplantation were carried out to determine whether their characteristics were genetically fixed or not. Also soil sample of these habitats were analyzed. The amounts of loss on ignition, maximum field capacity, total nitrogen, exchangeable calcium and potassium, and soluble phosphorus were found to be significantly different between two habitats. Leaf thickness, leaf width, leaf length, stem height number of branches, and number of seeds were significantly different between plants of two populations. And flowering times of two populations did not overlap. According to the results of transplantation, leaf width, leaf thickness, and flowering times were the same as those at their original habitat. But the stem lenght, leaf lenght, number of branches and unmber of seeds were not. Therefore, the differences in the leaf length, leaf thickness, and flowering time seemed to bo genetically fixed. It were suggested that the creek bank populations of Suaeda japoinica were to be considered as different ecotypes.

  • PDF

액상화 지반의 과잉간극수압 소산 모델링 (Modeling of Dissipation of Excess Pore Pressure in Liquefied Sand Grounds)

  • 김성렬;황재익;;김명모
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.89-96
    • /
    • 2006
  • Recently, many researches on the dissipation of excess pore pressure in liquefied sand grounds have been performed to evaluate post-liquefaction behaviors of structures. In this paper. centrifuge tests were performed to simulate liquefaction behaviors of prototype soil. The evaluation model of solidified layer thickness was developed to simulate non-linear variation of solidified layer thickness with time. Also, the dissipation of excess pore pressure in liquefied sand was evaluated by applying the solidification theory and the consolidation theory. The developed model gives a good estimation of the solidified layer thickness and the time history of excess pore pressure.

  • PDF

LANDSLIDE SUSCEPTIBILITY ANALYSIS USING GIS AND ARTIFICIAL NEURAL NETWORK

  • Lee, Moung-Jin;Won, Joong-Sun;Lee, Saro
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.256-272
    • /
    • 2002
  • The purpose of this study is to develop landslide susceptibility analysis techniques using artificial neural network and to apply the newly developed techniques to the study area of Boun in Korea. Landslide locations were identified in the study area from interpretation of aerial photographs, field survey data, and a spatial database of the topography, soil type, timber cover, geology and land use. The landslide-related factors (slope, aspect, curvature, topographic type, soil texture, soil material, soil drainage, soil effective thickness, timber type, timber age, and timber diameter, timber density, geology and land use) were extracted from the spatial database. Using those factors, landslide susceptibility was analyzed by artificial neural network methods. For this, the weights of each factor were determinated in 3 cases by the backpropagation method, which is a type of artificial neural network method. Then the landslide susceptibility indexes were calculated and the susceptibility maps were made with a GIS program. The results of the landslide susceptibility maps were verified and compared using landslide location data. A GIS was used to efficiently analyze the vast amount of data, and an artificial neural network was turned out be an effective tool to maintain precision and accuracy.

  • PDF

중금속 오염 농경지 토양의 복원을 위한 현장실증시험 결과 (A Result of Field Demonstration Experiment on the Remediation of Farm Land Soil contaminated by Heavy Metals)

  • 유찬;윤성욱;박진철;이정훈;최승진;윤성문
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.265-277
    • /
    • 2009
  • A long-term field demonstration experiment of selected stabilization method to reduce the heavy metal mobility in farmland soil contaminated by heavy metals around abandoned mine site was conducted. Field demonstration experiments were established on the contaminated farmland with the wooden plate(thickness=1cm) which dimension were width=200cm, Length=200cm, height=80cm and filled with treated soil, which was mixed with lime stone and steel refining slag except on control plot. Soil samples were collected and analyzed during the experiment period(2008. 2~2008. 8) after the installation of the plots. Field demonstration experiments results showed that the application ratio of lime stone 5% was effective for immobilizing heavy metal components in contaminated farmland soil.

  • PDF

3차원 수치해석을 통한 궤도지지말뚝의 동적거동 평가 (Evaluation of Dynamic Behavior for Pile-Supported Slab Track System by 3D Numerical Analysis)

  • 유민택;백민철;이일화;이진선
    • 한국지진공학회논문집
    • /
    • 제21권5호
    • /
    • pp.255-264
    • /
    • 2017
  • Dynamic numerical simulation of pile-supported slab track system embedded in a soft soil and embankment was performed. 3D model was formulated in a time domain to consider the non-linearity of soil by utilizing FLAC 3D, which is a finite difference method program. Soil non-linearity was simulated by adopting the hysteric damping model and liner elements, which could consider soil-pile interface. The long period seismic loads, Hachinohe type strong motions, were applied for estimating seismic respose of the system, Parametric study was carried out by changing subsoil layer profile, embankment height and seismic loading conditions. The most of horizontal permanent displacement was initiated by slope failure. Increase of the embedded height and thickness of the soft soil layer leads increase of member forces of PHC piles; bending moment, and axial force. Finally, basic guidelines for designing pile-supported slab track system under seismic loading are recommended based on the analysis results.

Soil vibration induced by railway traffic around a pile under the inclined bedrock condition

  • Ding, Xuanming;Qu, Liming;Yang, Jinchuan;Wang, Chenglong
    • Geomechanics and Engineering
    • /
    • 제24권2호
    • /
    • pp.143-156
    • /
    • 2021
  • Rail transit lines usually pass through many complicated topographies in mountain areas. The influence of inclined bedrock on the train-induced soil vibration response was investigated. Model tests were conducted to comparatively analyze the vibration attenuation under inclined bedrock and horizontal bedrock conditions. A three-dimension numerical model was built to make parameter analysis. The results show that under the horizontal bedrock condition, the peak velocity in different directions was almost the same, while it obviously changed under the inclined bedrock condition. Further, the peak velocity under inclined bedrock condition had a larger value. The peak velocity first increased and then decreased with depth, and the trend of the curve of vibration attenuation with depth presented as a quadratic parabola. The terrain conditions had a significant influence on the vibration responses, and the inclined soil surface mainly affected the shallow soil. The influence of the dip angle of bedrock on the peak velocity and vibration attenuation was related to the directions of the ground surface. As the soil thickness increased, the peak velocity decreased, and as it reached 173% of the embedded pile length, the influence of the inclined bedrock could be neglected.

Microstructural observations of shear zones at cohesive soil-steel interfaces under large shear displacements

  • Mamen, Belgacem;Hammoud, Farid
    • Geomechanics and Engineering
    • /
    • 제25권4호
    • /
    • pp.275-282
    • /
    • 2021
  • Failure mechanism which can affect geotechnical infrastructures (shallow foundations, retaining walls, and piles) constitutes one of the most encountered problems during the design process. In this respect, the shear behavior of interfaces between grained soils and solid building materials, as well as those between cohesive soils should be investigated. Therefore, a range of ring shear tests with different cohesive soils and stainless-steel interfaces have been carried out through the Bromhead apparatus that allows simulating large displacements along a failure surface. The effects of steel rings roughness and soil type on the residual friction coefficient and the shear zone features (structure, thickness, and texture orientation angle) have been investigated using the Scanning Electron Microscopy. The obtained results indicate that the residual friction coefficient and the structural characteristics of the shear zone vary according to the surface roughness and the soil type. Scanning electron microscopy reveals that the particles inside the shear zone tend to be re-oriented. Also, the shear failure mechanism can be identified along with the interface, within the soil, or simultaneously at the interface and within the soil specimen.

Application of six neural network-based solutions on bearing capacity of shallow footing on double-layer soils

  • Wenjun DAI;Marieh Fatahizadeh;Hamed Gholizadeh Touchaei;Hossein Moayedi;Loke Kok Foong
    • Steel and Composite Structures
    • /
    • 제49권2호
    • /
    • pp.231-244
    • /
    • 2023
  • Many of the recent investigations in the field of geotechnical engineering focused on the bearing capacity theories of multilayered soil. A number of factors affect the bearing capacity of the soil, such as soil properties, applied overburden stress, soil layer thickness beneath the footing, and type of design analysis. An extensive number of finite element model (FEM) simulation was performed on a prototype slope with various abovementioned terms. Furthermore, several non-linear artificial intelligence (AI) models are developed, and the best possible neural network system is presented. The data set is from 3443 measured full-scale finite element modeling (FEM) results of a circular shallow footing analysis placed on layered cohesionless soil. The result is used for both training (75% selected randomly) and testing (25% selected randomly) the models. The results from the predicted models are evaluated and compared using different statistical indices (R2 and RMSE) and the most accurate model BBO (R2=0.9481, RMSE=4.71878 for training and R2=0.94355, RMSE=5.1338 for testing) and TLBO (R2=0.948, RMSE=4.70822 for training and R2=0.94341, RMSE=5.13991 for testing) are presented as a simple, applicable formula.

15~17세기 초, 난간석만 갖춘 조선왕릉의 등장과 구조적 특징 (The Study on the Structural Characteristics for the Royal Tomb of the Joseon Dynasty from the 15th Century to the early 17th Century - Focusing on the Bongneung Equipped with only Rail Stones -)

  • 신지혜
    • 건축역사연구
    • /
    • 제32권5호
    • /
    • pp.31-42
    • /
    • 2023
  • This study examined the structural characteristics of the royal tomb equipped with only rail stones in the early Joseon Dynasty. Bongneung(封陵: the burial mound of royal tomb) equipped with only rail stones was constructed from 1468 to 1632. During this period, Hyeongung(玄宮: the underground chamber for the coffin of the king or queen) was constructed with lime. When the Hyeongung is completed, the soil is covered with a thickness of 1 foot parallel to the ground surface. On top of that, as the base of the Bongneung, the rail ground stone is constructed with a height of about 1.5 to 2 feet. The inside of the rail ground stone is also firmly filled with soil. On top of this, semicircular lime is installed with a convex center. Lastly the soil is divided and compacted several times to form a hill, and then covered with grass to complete the Bongneung. The notable feature is that between the Hyeongung made of lime and the Bongneung made of soil, the rail ground stone serves as a stylobate with the inside compacted by the soil.

지중 축냉조에 대한 에너지 시뮬레이션 (Energy Simulation for the Cold Storage Tank in the Ground)

  • 김홍제;양윤섭
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국태양에너지학회, 한국에너지공학회 1993년도 춘계 공동학술발표회 초록집
    • /
    • pp.79-84
    • /
    • 1993
  • The heat transfer process below and adjacent to the cold storage is numerically investigated. The cold storage dimensions, temperatures, insulation thickness, and the initial soil temperature were considered.

  • PDF