• Title/Summary/Keyword: soil thickness

Search Result 563, Processing Time 0.027 seconds

Application Analysis of Vitex rotundifolia by Difference of the Shallow-Extensive Green Roof System (저관리 옥상녹화의 식재기반 시스템 차이에 따른 순비기나무의 활용성 평가)

  • Park, Jun-Suk;Ju, Jin-Hee;Kim, Won-Tae;Yoon, Young-Han
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.4
    • /
    • pp.10-17
    • /
    • 2010
  • The objectives of this study were to compare the growth of Vitex rotundifolia as affected by the difference of soil depth and mixture ratio in a shallow-extensive green roof module system, and to identify the level of soil thickness and mixture ratio as suitable growing condition to achieve the desired plant growth in green roof. Different soil thickness levels were achieved under 7cm, 15cm and 25cm of shallow-extensive green roof module systems made by woody frame of $500{\times}500{\times}300mm$. Soil mixture ratio were eight types for perlite : peatmoss : leafmold = 7 : 1 : 2 (v/v/v, $P_7P_1L_2$), perlite : peatmoss : leafmold = 6 : 2 : 2 (v/v/v, $P_6P_2L_2$), perlite : peatmoss : leafmold = 5 : 3 : 2 (v/v/v, $P_5P_3L_2$), perlite : peatmoss : leafmold = 4 : 4 : 2 (v/v/v, $P_4P_4L_2$), only sand ($S_{10}$), sand : leafmold = 7 : 3 (v/v, $S_7L_3$), sand : leafmold = 5 : 5 (v/v, $S_5L_5$) and only leafmold ($L_{10}$). The growth response of Vitex rotundifolia had fine and sustain condition in $P_6P_2L_2$, $P_5P_3L_2$ and $P_4P_4L_2$., Especially, in case of $P_6P_2L_2$, growth response appeared to be good even in soil thickness 7cm, which showed low survival rates of Vitex rotundifolia in other soil mixtures. Tree height, root diameter, photosynthesis and chlorophyll contents tended to increase with increased soil thickness.

Effects of pile geometry on bearing capacity of open-ended piles driven into sands

  • Kumara, Janaka J.;Kurashina, Takashi;Kikuchi, Yoshiaki
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.385-400
    • /
    • 2016
  • Bearing capacity of open-ended piles depends largely on inner frictional resistance, which is influenced by the degree of soil plugging. While a fully-plugged open-ended pile produces a bearing capacity similar to a closed-ended pile, fully coring (or unplugged) pile produces a much smaller bearing capacity. In general, open-ended piles are driven under partially-plugged mode. The formation of soil plug may depend on many factors, including wall thickness at the pile tip (or inner pile diameter), sleeve height of the thickened wall at the pile tip and relative density. In this paper, we studied the effects of wall thickness at the pile base and sleeve height of the thickened wall at the pile tip on bearing capacity using laboratory model tests. The tests were conducted on a medium dense sandy ground. The model piles with different tip thicknesses and sleeve heights of thickened wall at the pile tip were tested. The results were also discussed using the incremental filling ratio and plug length ratio, which are generally used to describe the degree of soil plugging. The results showed that the bearing capacity increases with tip thickness. The bearing capacity of piles of smaller sleeve length (e.g., ${\leq}1D$; D is pile outer diameter) was found to be dependent on the sleeve length, while it is independent on the sleeve length of greater than a 1D length. We also found that the soil plug height is dependent on wall thickness at the pile base. The results on the incremental filling ratio revealed that the thinner walled piles produce higher degree of soil plugging at greater penetration depths. The results also revealed that the soil plug height is dependent on sleeve length of up to 2D length and independent beyond a 2D length. The piles of a smaller sleeve length (e.g., ${\leq}1D$) produce higher degree of soil plugging at shallow penetration depths while the piles of a larger sleeve length (e.g., ${\geq}2D$) produce higher degree of soil plugging at greater penetration depths.

Change in Growth of Chrysanthemum zawadskii var. coreanum as Effected by Different Green Roof System under Rainfed Conditions (빗물활용 옥상녹화 식재지반에 따른 한라구절초의 생육 변화)

  • Ju, Jin-Hee;Kim, Won-Tae;Yoon, Yong-Han
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.1
    • /
    • pp.117-123
    • /
    • 2011
  • This study aims to suggest a suitable soil thickness and soil mixture ratio of a green roof system by verifying the growth of Chrysanthemum zawadskii var. coreanum as affected by different green roof systems using rainwater. The experimental planting grounds were made with different soil thicknesses(15cm, 25cm) and soil mixing ratios (SL, $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$, $P_4P_4L_2$) and with excellent drought tolerance. Ornamental value Chrysanthemum zawadskii var. coreanum was planted. The change in plant height, green coverage ratio, chlorophyll content, fresh weight, dry weight, and dry T/R ratio of Chrysanthemum zawadskii var. coreanum were investigated from April to October 2009. For 15cm soil thickness, the plant height of Chrysanthemum zawadskii var. coreanum was not significantly different as affected by the soil mixing ratio. However, it was found to be higher in the amended soil mixture, $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$ and $P_4P_4L_2$ than in the sandy loam soil, as it was SL overall. For 25cm soil the plant height differences were in order to SL < $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$ < $P_4P_4L_2$. The green coverage ratio was observed not to be different by soil mixing ratio with soil thickness of 15cm, but, the lowest green coverage ratio in the SL. In the 25cm soil thickness, the green coverage ratio was 86-89% with a good coverage rate overall. The change in chlorophyll contents with 15cm soil thickness was found to be the highest in the SL treatment and the lowest in the $P_5P_3L_2$ treatment. For 25cm thickness, the highest value was in the $P_4P_4L_2$ and SL, and the lowest in the$P_7P_1L_2$. Fresh weight and dry weight were larger in soil with 25cm thickness. Therefore, the growth of Chrysanthemum zawadskii var. coreanum as affected by a different green roof system for using rainwater was higher in soil with 25cm thickness than 15cm, and in PPL amended soil than in sandy loam.

An Analytical Solution of Progressive Wave-Induced Residual Pore-Water Pressure in Seabed (진행파동장하 해저지반내 잔류간극수압의 해석해)

  • Lee, Kwang-Ho;Kim, Dong-Wook;Kim, Do-Sam;Kim, Tae-Hyung;Kim, Kyu-Han;Ryu, Heung Won
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.3
    • /
    • pp.159-167
    • /
    • 2015
  • In this paper, the errors found in the existed analytical solutions described the mechanism of residual pore-water pressure accumulation were examined and a new analytical was proposed. The new analytical solution was derived by using a Fourier series expansion and separation of variables was verified by comparison with the existed both analytical and numerical solutions and experimental result. The new analytical solution is very simple that there is no need for numerical integration for deep soil thickness. In addition, the solutions of the residual pore-water pressure for finite, deep, and shallow soil thickness reveled that it is possible to approach from finite to shallow soil thickness, but not possible to deep soil thickness because there was discontinues zone between finite and deep soil thickness.

Estimation of Reinforced Roadbed Thickness based on Experimental Equation (노반재료의 소성침하 예측식을 이용한 강화노반 두께 산정)

  • Shin, Eun-Chul;Yang, Hee-Saeng;Choi, Chan-Yong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1747-1755
    • /
    • 2008
  • Design of the reinforced roadbed thickness is concerned with safe operation of trains at specified levels of speed, axle load and tonnage. There are two methods for evaluating it. One is using an experimental equation and the other is using elastic theory with considering axle load, material properties of subsoils and allowable elastic settlement. Multi-layered theory is used to determine reinforced roadbed thickness by RTRI. Although their reinforced roadbed thickness is designed with an objective of achieving a minimum standard 2.5mm of settlement on the subgrade surface, it is hardly applied to real design. Li(1994) has suggested the experimental model which design approach is to limit plastic strain and deformations for the design period. It is worth due to adopting soil equivalent number of repeated load application. Moreover, it has been a more advanced method than existing design methods because including resilient modulus of subsoil beneath track, soil deviator stress caused by train axle loads and MGT. In this paper, it is analyzed under domestic track conditions to estimate the reinforced roadbed thickness with different soil types.

  • PDF

Soil and structure uncertainty effects on the Soil Foundation Structure dynamic response

  • Guellil, Mohamed Elhebib;Harichane, Zamila;Berkane, Hakima Djilali;Sadouk, Amina
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.153-163
    • /
    • 2017
  • The underlying goal of the present paper is to investigate soil and structural uncertainties on impedance functions and structural response of soil-shallow foundation-structure (SSFS) system using Monte Carlo simulations. The impedance functions of a rigid massless circular foundation resting on the surface of a random soil layer underlain by a homogeneous half-space are obtained using 1-D wave propagation in cones with reflection and refraction occurring at the layer-basement interface and free surface. Firstly, two distribution functions (lognormal and gamma) were used to generate random numbers of soil parameters (layer's thickness and shear wave velocity) for both horizontal and rocking modes of vibration with coefficients of variation ranging between 5 and 20%, for each distribution and each parameter. Secondly, the influence of uncertainties of soil parameters (layer's thickness, and shear wave velocity), as well as structural parameters (height of the superstructure, and radius of the foundation) on the response of the coupled system using lognormal distribution was investigated. This study illustrated that uncertainties on soil and structure properties, especially shear wave velocity and thickness of the layer, height of the structure and the foundation radius significantly affect the impedance functions, and in same time the response of the coupled system.

Application of waste rubber to reduce the settlement of road embankment

  • Tafreshi, S.N. Moghaddas;Norouzi, A.H.
    • Geomechanics and Engineering
    • /
    • v.9 no.2
    • /
    • pp.219-241
    • /
    • 2015
  • In this paper, a series of repeated load tests were carried out on a 150 mm diameter plate simulative of vehicle passes, to demonstrate the benefits of soil-rubber shred mixture in decreasing the soil surface settlement of road embankment. The results show that the efficiency of rubber reinforcement is significantly a function of the rubber content, thickness of rubber-soil mixture and soil cap thickness over the mixture. Minimum surface settlement is provided by 2.5% of rubber in rubber-soil mixture, the thickness of mixture layer and soil cap of 0.5 times the loading surface diameter, giving values of 0.32-0.68 times those obtained in the unreinforced system for low and high values of amplitude of repeated load. In this installation, in contrast with unreinforced bed that shows unstable response, the rate of enhancement in settlement decreases significantly as the number of loading cycles increase and system behaves resiliently without undergoing plastic deformation. The findings encourage the use of rubber shreds obtained from non-reusable tires as a viable material in road works.

An analytical investigation of soil disturbance due to sampling penetration

  • Diao, Hongguo;Wu, Yuedong;Liu, Jian;Luo, Ruping
    • Geomechanics and Engineering
    • /
    • v.9 no.6
    • /
    • pp.743-755
    • /
    • 2015
  • It is well known that the quality of sample significantly determines the accuracy of soil parameters for laboratory testing. Although sampling disturbance has been studied over the last few decades, the theoretical investigation of soil disturbance due to sampling penetration has been rarely reported. In this paper, an analytical solution for estimating the soil disturbance due to sampling penetration was presented using cavity expansion method. Analytical results in several cases reveal that the soil at different location along the sample centerline experiences distinct phases of strain during the process of sampling penetration. The magnitude of induced strain is dependent on the position of the soil element within the sampler and the sampler geometry expressed as diameter-thickness ratio D/t and length-diameter ratio L/D. Effects of sampler features on soil disturbance were also studied. It is found that the induced maximum strain decreases exponentially with increasing diameter-thickness ratio, indicating that the sampling disturbance will reduce with increasing diameter or decreasing wall thickness of sampler. It is also found that a large length-diameter ratio does not necessarily reduce the disturbance. An optimal length-diameter ratio is suggested for the further design of improved sampler in this study.

A Study on the Mechanical Compaction of Fill Dam (Fill Dam의 기계 전압효과에 관한 연구)

  • 윤충섭;김주범
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.3
    • /
    • pp.92-103
    • /
    • 1979
  • The compaction of core zone of the fill dam is very important foe increasing of the Strength of soil mass and reduction of permeability of the core. The principal objects of this study are to give the construction criteria of tamping rollers and to find out the relationships between density and permeability of soil after compaction. The results in this study are summarized as follows. 1. The core zone of fill dam should be compacted more than 8 passed because the compaction effects of clayey soil increase sharply in about 8 passes of roller. 2. The coefficient of permeability (K) increases with the thickness of compaction of soil even though the density is same. 3. The effect of compaction increases with the quantity of coarse materials such as coarse sand and gravel. 4. If D values change from 100 percent to 98 percent and from 100 percent to 95 percent, K values become 2 times and 5 times of initial K value respectively. 5. The coefficient of permeability in the field soil is very high comparing with the result of laboratory test at the same 100 percent compaction ratio, but differences between both results decrease with the decrease of compaction ratio. 6. Thickness of soil layer for the compaction should be increased for heavier compaction machine. 7. In order to get the compaction ratio of 98 percent or more, 10 to 12 passes of roller is generally required with the thickness of soil from 20cm to 30cm.

  • PDF

A Study of a Combined Microwave and Thermal Desorption Process for Contaminated Soil

  • Ha, Sang-An;Choi, Kyoung-Sik
    • Environmental Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.225-230
    • /
    • 2010
  • In order to treat soil contaminated with high percentages of water and petroleum, the combined microwave and thermal desorption process was studied, which was composed of the consecutive connection of two pre-treatment processes. For the thickness of the contaminated soil layer on the transfer conveyor belt, the optimal total petroleum hydrocarbon (TPH) removal rate was studied with respect to the duration of microwave exposure in the consecutive process combined with thermal desorption. The TPH removal rate when the contaminated soil layer thickness was 1 cm at 6 kW of microwave power was 80%. The removals rates for 2 and 3 cm soil layer thicknesses were both 70%. Under identical experimental conditions, the TPH removal rate for the microwave pre-treatment, when considering the soil particle size, was over 70%. The lowest TPH removal rate was achieved with a particle diameter of 2.35 mm. For contaminated soil with 30% water content, 6 kW and a thermal desorption temperature of $600^{\circ}C$ were the optimal operational conditions for the removal of THP. However, considering the fuel consumption cost, 4 kW and a thermal desorption temperature of $300^{\circ}C$ would be the most economic conditions.