• 제목/요약/키워드: soil solution concentration

검색결과 447건 처리시간 0.038초

퇴적 연약점토의 오염에 따른 강도 및 변형 거동특성 (The Behaviour Characteristics of Strength and Deformation of the Deposited Soft Clay Owing to Contamination)

  • 천병식;하광현
    • 한국지반공학회논문집
    • /
    • 제21권6호
    • /
    • pp.117-126
    • /
    • 2005
  • 채취된 퇴적 점토시료의 화학적 특성을 규명하기 위하여 주사전자현미경(SEM) 관찰과 에너지분산분광(EDX) 분석을 수행하였다. 또한 생활하수 및 산업폐수의 유입으로 오염된 퇴적점토의 강도 및 변형특성 변화를 파악하기 위하여 NaCl 수용액과 매립장 침출수를 시료의 간극수 또는 포화수로 교체하여 삼축압축시험과 압밀시험을 실시하였다. 점토시료에 대한 화학성분 분석결과 구성비 크기는O, C, Si, Al, Fe순서를 보이고 있으며, 이 중에서 C의 비율이 높게 나타난 것은 방조제 축조로 인한 식물 플랑크톤의 증식에 기인된 것으로 추정된다. 삼축압축시험 및 압밀시험결과, NaCl의 농도가 증가할수록 전단강도는 증가하고 압축성이 커지는 것으로 나타났다. 이는 전해질의 농도가 증가할수록 확산이중층(DDL)의 두께가 감소되어 흙의 구조가 면모화되기 때문인 것으로 판단된다.

제염용액에 의한 토양 중 철 성분 용해 특성 (Dissolution Characteristics of Iron Ion in Soil by the Decontamination Solution)

  • 원휘준;김계남;정종헌;최왕규;박진호;오원진
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2003년도 가을 학술논문집
    • /
    • pp.676-680
    • /
    • 2003
  • 제염 용액인 citric acid의 농도를 일정하게 유지(0.05M)한 상태에서 토양 내 존재하는 주요 철 성분인 마그네타이트에 대한 용해거동을 조사하였다. 수용액의 산도는 pH 2.0-5.0의 산성영역에서 이루어 졌고 온도는 $50^{\circ}C$에서 수행하였다. 수용액의 pH는 수산화나트륨과 질산용액을 사용하여 조절하였다. Citric acid의 이온화 상수를 사용하여 pH의 변화에 따른 해리 화학종 별 농도를 계산하였으며 마그네타이트의 표면전위를 측정하였다. 측정된 표면전위 값과 해리 화학종인 $H_2Y^-$$^HY^{2-}$ 를 비교함에 의해 citric acid에 의한 마그네타이트의 용해특성을 잘 설명할 수 있었다. 마그네타이트로부터 철 성분이 용해될 때까지 3 h 이상의 유도기간이 존재하는 것으로 나타났으며 시간 경과에 따른 철 성분의 농도 변화에 대한 용해거동을 반응식을 사용하여 전개함에 의해 마그네타이트의 용해반응을 설명하였다. 실험범위의 pH 영역에서 최적화된 변수들의 물리적 의미를 용해반응 모델 식으로부터 설명하였다.

  • PDF

고축적식물의 중금속 흡수기작과 뿌리에 의한 근권 토양의 화학변화 - 총설 (Hyperaccumulation mechanism in plants and the effects of roots on rhizosphere soil chemistry - A critical review)

  • 김권래;;;김계훈
    • 한국토양비료학회지
    • /
    • 제40권4호
    • /
    • pp.280-291
    • /
    • 2007
  • 토양중 중금속을 흡수해서 체내에 고농도로 축적할 수 있는 식물, 이른바 고축적식물(hyperaccumulator)의 발견으로 오염토양에 대한 식물복원(phytoremediation) 기술에 대한 많은 연구들이 수행되고 있다. 이들 연구의 방향은 크게 고축적식물의 중금속 축적 기작을 밝히기 위한 것과 축적효율을 높임으로써 복원 효율을 향상시키는 실용적인 기술개발로 나누어진다. 지금까지 고축적식물에 의한 중금속 축적 기작은 다섯 가지의 특이 기작으로 알려져 있는데, 1) 뿌리세포의 중금속 흡수 증진, 2) 식물체 조직내의 중금속 이동성 향상, 3) 중금속의 무독화(detoxification) 및 격리(sequestration), 4) 토양-뿌리 경계면에서의 중금속 유효도 증진, 그리고 5) 중금속 오염토양으로의 능동적인 뿌리의 성장 등이 이에 속한다. 일반적으로 토양 중 낮은 중금속 유효도는 식물복원 기술의 현장 적용에 있어 제한요소로 간주된다. 이를 극복하기 위해서는 위에 기술된 다섯 가지 기작 중 고축적식물의 뿌리가 근권 토양중 중금속의 화학변화에 미치는 영향을 이해하는 것이 매우 중요하다. 식물 뿌리에 의한 근권 토양의 pH 변화와 뿌리에서 나오는 분자량이 적은 유기산(low-molecular-weight organic acids, LMWOAs)과 같은 유기성 분비물은 근권부 토양의 화학적 특성을 변화시키고 결과적으로 중금속의 유효도를 변화시킨다. 예를 들어 뿌리에서 나오는 $H^+$ 이온은 토양 pH를 감소시키고 이에 따라 중금속의 유효도는 증가한다. 또한 고농도의 중금속에 노출된 뿌리는 많은 양의 유기물질을 분비하게 되고 근권 토양에 축적되는 이 유기물질은 토양중 중금속과 결합하여 유기복합물질(organo-metallic complexes)을 형성하면서 유효도를 증가시킨다.

배지경 포트재배에서 비료용액의 NO3-:NH4+ 비율이 고추의 생장 및 수량에 미치는 영향 (Influence of NO3-:NH4+ Ratios in Fertilizer Solution on Growth and Yield of Hot Pepper (Capsicum annuum L.) in Pot Cultivation)

  • 이호진;최종명;장성완;정석기
    • 원예과학기술지
    • /
    • 제31권1호
    • /
    • pp.65-71
    • /
    • 2013
  • 시설하우스 내에서 포트재배 할 때 관비용액의 $NO_3{^-}:NH_4{^+}$ 비율이 고추(Capsicum annuum L.)의 지상부 생장과 수량에 미치는 영향을 구명함으로써 고추 재배를 위한 시비 프로그램 확립의 기초 자료를 확보하고자 본 연구를 수행하였다. 연구의 목적을 달성하기 위하여 $NO_3{^-}:NH_4{^+}$ 비율을 0:100(A), 27:73(B), 50:50(C), 73:27(D), 100:0(E)을 조절한 처리를 만들고, 무시비구(F)를 대조구로 삼아 총 6처리를 두어 실험하였다. 포트재배에서 정식 62일 후 생체중, 건물중 및 엽수는 $NH_4{^+}$를 100% 시비한 E 처리에서 감소하였으나 A, B, C 및 D 처리간에는 통계적 차이가 인정되지 않았다. 그러나 착과수는 A와 B에서, 생과중은 A에서 많거나 무거웠으며 C, D, E 처리 순으로 유의성 있게 감소하였다. 정식 62일 후 건물중을 기초로 한 고추 잎의 무기원소 함량을 분석한 결과 $NH_4{^+}$ 시비비율이 높을수록 식물체 N 및 P 함량이 증가하였다. 반면 $NH_4{^+}$ 비율이 높을수록 양이온인 K, Ca, Ng의 식물체 함량이 감소하였다. 그러나 미량원소 중 양이온인 Fe, Mn, Zn 및 Cu의 식물체내 함량이 증가하는 경향을 나타내었다. 정식 62일 후 상토를 분석한 결과 $NH_4{^+}$ 비율이 높아질수록 EC는 상승하고 pH가 낮아졌다. $NH_4{^+}$ 비율이 높아질수록 근권부의 총 질소 농도가 높아지는 경향을 보였지만 처리간 차이가 뚜렷하지 않았고, $Ca^{{+}{+}}$$Mg^{{+}{+}}$ 농도가 유의하게 낮아졌다. 이상의 결과를 고려할 때 시설하우스내 포트 재배에서 고추의 생산량 증가를 위한 관비용액의 적정 $NO_3{^-}:NH_4{^+}$ 비율은 73:27(B) 또는 100:0(A)이며, 영양생장을 위해서는 B, 생식생장을 위해서는 A와 유사하게 $NO_3{^-}:NH_4{^+}$ 비율을 조절하는 것이 바람직하다고 판단하였다.

염기성 밭 토양에서 안정화제에 의한 엽채류, 근채류, 과채류 작물들의 중금속 전이 특성 (Effects of Amendments on Heavy Metal Uptake by Leafy, Root, Fruit Vegetables in Alkali Upland Soil)

  • 김민석;민현기;이상환;김정규
    • Ecology and Resilient Infrastructure
    • /
    • 제7권1호
    • /
    • pp.63-71
    • /
    • 2020
  • 토양에서 중금속 안정화를 위하여 여러 종류의 개량제들이 연구되어왔다. 그러나 알칼리 토양에서 개량제들의 영향과 그에 따른 작물 가식부로의 중금속 전이에 대한 연구는 미비한 실정이다. 따라서 본 연구는 알칼리 토양에서 농작물의 가식부를 대상으로 중금속 안정화 효율 및 중금속 전이를 평가하기 위해 수행되었다. 중금속으로 오염된 광산 인근 농경지 토양에 3종류의 안정화제 (석회석, 제강슬레그, 산성광산배수슬러지)를 각각 3%씩 현장에 처리하였다. 6개월의 aging 이후 배추 (엽채류), 청경채(엽채류), 마늘 (근채류) 그리고 고추 (과채류)를 정식하고 표준영농교본에 준하여 재배하였다. 화학적 평가를 위해 토양 내 중금속의 총함량과 Melhich-3 용액을 이용한 생물유효도를 검정하였다. 생물학적 평가를 위하여 작물들의 생산량과 중금속 흡수량을 분석하였다. 그 결과, 산성광산배수슬러지 개량제의 유효도 저감 효과가 가장 우수하였으며 그에 따라 식물로의 중금속 전이 또한 감소하였다. 통계분석 결과 식물의 중금속 흡수를 설명하는 데에 있어 토양 내 중금속 총함량 보다는 생물유효도가 더 적합한 것으로 나타났다. 지속가능한 토양 환경의 관리, 안전한 농작물 생산, 그리고 중금속 흡수에 따른 인체 위해성 저감을 위하여 생물유효도에 기반한 연구가 지속적으로 수행되어야 할 것이다.

중금속(重金屬) 오염토양(汚染土壤)의 구산(枸酸) 침출(浸出)에 대한 pH의 영향(影響) (The Effect of pH on Citric Acid Leaching of Soil Contaminated with Heavy Metals)

  • 정경배;박홍기;류경근;박제현;최의규
    • 자원리싸이클링
    • /
    • 제22권5호
    • /
    • pp.13-19
    • /
    • 2013
  • 구리, 아연 및 납 등의 중금속으로 오염된 사격장 토양으로부터 중금속 성분을 제거하기 위한 친환경적인 공정을 개발하기 위해 구연산용액을 이용하여 중금속 침출거동에 대한 pH의 영향을 조사하였다. 구연산 침출실험은 구연산과 구연산나트륨을 혼합하여 pH를 조절한 용액을 이용하여 시료입도 $75{\mu}m$이하, 반응온도 $50^{\circ}C$, 구연산 농도 1 몰, 광액농도 5%, 교반속도 100 rpm, 그리고 침출시간 1 시간의 조건에서 진행하였다. 침출반응 전후의 pH 변화는 미미하여 침출에 미치는 수소이온농도의 직접적인 영향은 크지 않은 것으로 판단되었다. 구리, 아연, 납의 제거율은 pH가 증가함에 따라 감소하였고, 열역학적인 계산결과, 이와 같은 침출거동은 중금속 이온이 구연산염 이온종과 착이온을 형성하는 반응과 중금속이온이 수산화이온과 결합하여 수산화물로 침전하는 반응에 의해 결정되는 것으로 분석되었다.

SPCE에 HRP 효소가 고정화된 바이오센서의 전기화학적 특성에 관한 연구 (A Study on the Electrochemical Characteristics of Biosensor with HRP Enzyme Immobilized on SPCE)

  • 한경호;이대현;윤도영;최상일
    • 전기화학회지
    • /
    • 제23권3호
    • /
    • pp.73-80
    • /
    • 2020
  • 과산화수소를 이용한 펜톤(Fenton)산화법은 수처리 및 토양 복원분야에서 활용되는 친환경 산화방법이다. 이 방법으로 오염물질을 제거할 때, 오염물의 농도에 따라 과산화수소의 농도를 적절하게 조절하는 것이 상당히 중요하다. 이에 본 연구에서는 HRP (horseradish peroxidase) 효소를 이용한 전기화학적 바이오센서를 제조하고 효소의 활성과 과산화수소의 검출 특성에 대한 연구를 수행하였다. SPCE (Screen Printed Carbon Electrode)의 작업 전극 표면에 키토산과 AuNP를 이용하여 HRP를 전착하였다. 이 후, 전위주사법(CV)과 전기화학적 임피던스 분광법(EIS)을 이용하여 효소의 고정화를 확인하였다. 또한 시간대전류법(CA)과 UV 분광법으로부터 HRP 효소의 활성을 확인하였다. 본 연구에서 제조한 바이오센서를 PBS 전해질에 담그고 과산화수소를 적정하여 CA 분석으로부터 전극에서 발생하는 전류를 측정하였다. 발생 전류는 과산화수소의 농도에 대하여 선형적으로 증가하였으며, 전류로부터 과산화수소의 농도를 예측할 수 있는 검정곡선을 도출하였다.

홍수터 여과 모형을 이용한 하천수중의 유기물과 질소 제거 (Removal of Organic Matter and Nitrogen from River Water in a Model System of Floodplain Filtration)

  • 하현수;김상태;김승현;정병룡;이영득;엄진섭;지승환;정종배
    • Applied Biological Chemistry
    • /
    • 제45권2호
    • /
    • pp.84-91
    • /
    • 2002
  • 유기물과 질소 함량이 높은 하천수가 대하천에 유입되기전 소하천의 잡초가 자라는 홍수터에 살포하여 사질 토층을 수직 이동하는 동안 잡초의 근권에서 유기물의 분해와 함께 탈질에 의해 질소가 제거되도록 하는 홍수터 여과공법을 개발하였다. 직경 15cm, 길이 150cm의 PVC pipe에 실제 홍수터에서 채취한 사질의 토양을 충진하여 제작된 홍수터 모형에 하천수를 27.2, 40.8, $68.0\;ml/day/m_2$의 유량으로 연속적으로 살포하고 정상상태에 이른 후 토양 깊이별로 토양 용액을 채취하여 유기물과 $NO_3-N$을 비롯한 무기질소의 이동과 제거 현상을 조사하였고 토양 기체를 채취하여 $N_2$$N_20$의 발생 현상을 측정하였다. 포화상태에 가까운 수준으로 유량을 조절할 경우 하천수에 포함된 유기물만을 이용하더라도 매우 효과적인 탈질 환경이 5cm깊이 부근의 표층 토양에서부터 형성되었으며 유기물의 제거와 함께 질소도 효과적으로 제거할 수 있는 것으로 나타났다. 90cm깊이의 홍수터 토양을 통과하는 동안 평균적으로 COD는 18.7에서 5mg/l로 무기질소함량은 2.7에서 0.4mg/l로 정화되었다. 탈질 기체는 대부분 $N_2$ 형태로 발생되었으며 온실효과와 오존층 파괴를 유발하는 $N_2O$ 발생량은 매우 적었다. 표층 토양에 잡초의 근권이 형성되어 있는 실제 홍수터에 이와 같은 기법을 적용할 경우 모형 실험에서 나타난 결과보다 더욱 활발한 탈질 현상이 유발될 수 있을 것으로 판단된다. 이러한 홍수터 여과는 부지가 따로 필요하지 않으므로 시설 및 운영비가 경쟁기술에 비해 싸고, 화학약품 처리나 슬러지 발생이 없는 환경친화적인 하천수 처리방법이 될 것으로 기대되며, 하천수 외에도 도시하수나 산업폐수의 3차 처리에도 응용되어 하폐수의 재활용을 통한 수자원의 절약과 하천수량의 증대에도 기여할 수 있을 것이다.

수도생육(水稻生育)에 대한 유해(有害) 중금속(重金屬)의 영향(影響) - 발아 및 묘대기(苗垈期) 생육(生育)에 대하여 - (Influence of Toxic Heavy Metals on Germination of Rice Seeds and Growth of Rice Seedling)

  • 김복진;하영래;김정옥;한기학
    • 한국토양비료학회지
    • /
    • 제11권2호
    • /
    • pp.119-126
    • /
    • 1979
  • 유해(有害) 중금속(重金屬)이 수도의 발아 및 묘대기(苗垈期)의 생육(生育)에 미치는 영향(影響)을 구명(究明)하기 위하여 중금속(重金屬) 원소별(元素別)로 농도(濃度)를 달리한 일정(一定)한 용액(溶液)을 계속(繼續) 공급(供給)하여 발아 및 묘(苗)의 생육(生育)에 미치는 영향(影響)을 조사(調査)한 결과(結果)는 다음과 같다. 1) 발아에 과잉(過剩)의 해(害)를 유발하는 중금속(重金屬)의 처리농도는 Cd; 0.05ppm 이하(以下), Cu; 0.05ppm 이하(以下), Ni; 0.5ppm 이하(以下), Co; 0.5~1.0 ppm, Cr; 0.5ppm~1.0ppm, Mn: 1.0ppm 이하(以下), Zn; 0.5~5.0ppm Pb; 0.5~5.0ppm으로 발아에 미치는 영향(影響)은 Cd>Cu>Ni>Co>Cr>Mn>Zn$$\geq_-$$Pb의 순(順)이었다. 2) 건물중(乾物重)의 감소(減少)를 유발하는 중금속(重金屬)의 처리 농도(濃度)는 Cd;0.05ppm 이하(以下), Ni, Cr, Co; 0.5ppm 이하(以下), Cu; 0.5~5ppm, Zn; 0.5~5ppm, Pb; 5~20ppm, Mn; 10~25ppm, 으로 건물중(乾物重)에 미치는 영향(影響)의 정도는 Ni>Cd>Cr>Co>Cu$$\geq_-$$Zn>Pb>Mn의 순(順)이었다. 3) 건물중(乾物重)의 감소(減少)를 유발하는 건물중(乾物中)의 중금속(重金屬)의 농도(濃度)는 Cd; 0.05~15.5ppm, Ni; 1.50~25.0ppm, Pb: 24.0~28.0ppm, Cu; 26.5~62.5ppm Zn; 470~645ppm, Mn; 231~500ppm, Co; 15.0ppm 이하(以下)였다. 4) 0.5ppm의 처리농도에서 각종(各種) 유해(有害) 중금속(重金屬)의 흡수(吸收) 축적(蓄積)은 Cr이 trace Co; 15ppm, Cd; 17.5ppm, Pb; 24.0ppm, Ni; 25. ppm, Cu; 84.5ppm, Zn; 470.0ppm으로 수도에 의(依)한 흡수정도(吸收程度)는 Zn>Cu>Ni>Pb>Cd>Co>Cr> 의 순(順)이었다. 5) 근활력(根活力)에 대해 과잉(過剩)의 해(害)를 유발하는 중금속(重金屬)의 농도(濃度)는 Ca;0.05ppm 이하(以下), Cu; 0.05~0.5ppm, Cr; 0.5ppm 이하(以下), Ni; 0.5~1.0ppm, Co; 0.5~1.0ppm, Zn; 0.5ppm 이상(以上), Pb; 0.5~5.0ppm, Mn; 1~10ppm으로 근활력(根活力)에 영향(影響)을 미치는 정도(程度)는 Cd>Cu>Cr>Zn>Ni>Co>Pb>Mn의 순(順)이었다.

  • PDF

축산폐수(畜産廢水) 처리시(處理時) 전기전도도(電氣傳導度)를 기준(基準)한 천연(天然) Zeolite의 교환시기(交換時期) 결정(決定) (Determination of Refreshing Time of Natural Zeolite Used for Livestock Waste Water Clearing Based on Electrical Conductivity)

  • 최정;서영진;이동훈
    • 한국토양비료학회지
    • /
    • 제29권2호
    • /
    • pp.130-136
    • /
    • 1996
  • EC(Electrical conductivity) meter를 이용(利用)하여 폐수(廢水) 처리제(處理劑)로 사용(使用)된 천연(天然) Zeolite의 교환시기(交換時期)를 쉽고 간편(簡便)하게 결정(決定)하고자 상징액(上澄液)의 EC변화(變化)와 Zeolite에 의한 이온의 흡착반응(吸着反應)과의 관계(關係)를 조사(調査)하였다. 용액중(溶液中)의 양이온이 Zeolite에 흡착(吸着)됨에 따라 상징액(上澄液)의 EC는 흡착평형(吸着平衡) 시(時)까지 감소(減少)하였으며 그 이후(以後)는 일정(一定)한 EC를 유지(維持)하였다. 시료량(試料量) 및 첨가용액(添加溶液)의 농도(濃度)가 증가(增加)할수록 $NH_4{^{+}}$$K^+$의 흡착량(吸着量)이 많아져서 용액(溶液)의 EC는 크게 감소(減少)하였다. Na-Zeolite가 Ca-Zeolite보다 $NH_4{^{+}}$$K^+$의 흡착량(吸着量)은 많았으나 $Na^+$의 탈착속도(脫着速度)가 $Ca^{2+}$ 보다 빠르고 용이(容易)하기 때문에 EC의 변화(變化)는 적었다. 실제(實際) 축산폐수(畜産廢水)에서도 Zeolite에 의한 흡착반응(吸着反應)이 진행(進行)됨에 따라 용액(溶液)의 EC가 감소(減少)하였고 그 경향(傾向)은 혼합한 용액(溶液)에서와 비슷하였다. 동일농도(同一濃度)의 용액(溶液)을 계속 첨가(添加)하여 반응(反應)을 조사(調査)한 결과(結果) 축산폐수와 혼합폐수 모두 4회(回)의 처리(處理)로 흡착포화상태(吸着飽和狀態)에 도달(到達)했으며 이때의 상징액(上澄液)의 EC는 첫 축산폐수(畜産廢水)의 EC와 같아졌기에 이때를 Zeolite 교환시기(交換時期)로 결정(決定)하여야 할 것이다.

  • PDF