• 제목/요약/키워드: soil sediment

검색결과 701건 처리시간 0.024초

기체크로마토그래피/질량분석기에 의한 저질 및 토양시료 중 벤조페논의 분석법 연구 (Analysis of Benzophenone in Sediment and Soil by Gas Chromatography/Mass Spectrometry)

  • 권오승;김은영;류재천
    • Environmental Analysis Health and Toxicology
    • /
    • 제16권3호
    • /
    • pp.121-126
    • /
    • 2001
  • Analytical method of benzophenone (BP) in sediment and soil was developed by gas chromatography/mass selective detector/selected ion monitoring (GC/MSD/SIM). The ultrasonic extraction of US EPA (method 3550B) method and liquid-liquid extraction for sediment and soil samples were used for the analysis of BP from sediment and soil. BP was extracted with n-hexane. Organic layer was washed with 5% sodium chloride solution. 1∼2 l of the concentrated solution of organic layer was applied to GC/MSD. The retention time of BP peak was 11.10 min. Recovery (%) of BP by ultrasonication from sediment and soil samples was 96.0∼100.6% and 40.0∼83.0%, respectively. Recovery of BP by liquid-liquid extraction was 51∼59% in soil samples. The detection limit of BP in sediment and soil samples were determined to 0.1 ng/g.

  • PDF

효과적인 토양유실 방지대책 수립을 위한 유사평가툴 (Enhanced Sediment Assessment Tool for Effective Erosion Control)

  • 임경재;;최예환;최중대;김기성;신용철;허성구;류창원
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.632-636
    • /
    • 2005
  • Accelerated soil erosion is a worldwide problem because of its economic and environmental impacts. To effectively estimate soil erosion and to establish soil erosion management plans, many computer models have been developed and used. The Revised Universal Soil Loss Equation (RUSLE) has been used in many countries, and input parameter data for RUSLE have been well established over the years. However, the RUSLE cannot be used to estimate the sediment yield for a watershed. Thus, the GIS-based Sediment Assessment Tool for Effective Erosion Control (SATEEC) was developed to estimate soil loss and sediment yield for any location within a watershed using the RUSLE and a spatially distributed sediment delivery ratio. SATEEC was enhanced in this study by developing new modules to:1) simulate the effects of sediment retention basins on the receiving water bodies, 2) prepare input parameters for the Web-based sediment decision support system using a GIS interface. This easy-to-operate SATEEC system can be used to identify areas vulnerable to soil loss and to develop efficient soil erosion management plans.

  • PDF

SATEEC 시스템을 이용한 객토 토양의 토성고려에 따른 도암댐 유역의 토양유실 및 유사량 분석 (Analysis of Soil Erosion and Sediment Yields at the Doam-dam Watershed considering Soil Properties from the Soil Reconditioned Agricultural Fields using SATEEC System)

  • 유동선;안재훈;윤정숙;허성구;박윤식;김종건;임경재;김기성
    • 한국물환경학회지
    • /
    • 제23권4호
    • /
    • pp.518-526
    • /
    • 2007
  • There have been serious soil erosion and water pollution problems caused by highland agriculture practices at Doam-dam watershed. Especially agricultural activities, chemical and organic fertilizer and pesticide applications, soil reconditioning to maintain soil fertility are known as primary causes of soil erosion and water qaulity degradation in the receiving water bodies. Among these, soil reconditioning can accelerate soil erosion rates. To develop soil erosion prevention practices, it is necessary to estimate the soil erosion from the watershed. Thus, the Universal Soil Loss Equation (USLE) model has been developed and utilized to assess soil erosion. However, the USLE model cannot be used at watershed scale because it does not consider sediment delivery ratio (SDR) for watershed application. For this reason, the Sediment Assessment Tool for Effective Erosion Control (SA TEEC) was developed to assess the sediment yield at any point in the watershed. The USLE-based SA TEEC system can estimate the SDR using area-based SDR and slope-based SDR module. In this study, the SATEEC system was used to estimate soil erosion and sediment yield at the Doam-dam watershed using the soil properties from reconditioned agricultural fields. Based on the soil sampling and analysis, the US LE K factor was calculated and used in the SA TEEC system to analyze the possible errors of previous USLE application studies using soil properties from the digital soil map, and compared with that using soil properties obtained in this study. The estimated soil erosion at the Doam-dam watershed without using soil properties obtained in the soil sampling and analysis is 1,791,400 ton/year (123 ton/ha/year), while the soil erosion amount is 2,429,900 ton/year (166.8 ton/ha/year) with the use of soil properties from the soil sampling and analysis. There is 35 % increase in estimated soil erosion and sediment yield with the use of soil properties from soil reconditioned agricultural fields. Since significant amount of soil erosion are known to be occurring from the agricultural fields, the soil erosion and sediment yield from only agricultural fields was assessed. The soil erosion rate is 45.9 ton/ha/year without considering soil properties from soil reconditioned agricultural fields, while 105.3 ton/ha/year after considering soil properties obtained in this study, increased in 129%. This study shows that it is very important to use correct soil properties to assess soil erosion and sediment yield simulation. It is recommended that further studies are needed to develop environment friendly soil reconditioning method should be developed and implemented to decrease the speed of soil erosion rates and water quality degradation.

SATEEC 시스템을 이용한 면적/경사도에 의한 유달률 산정 방법에 따른 유사량 분석 (Analysis of Sediment Yields at Watershed Scale using Area/Slope-Based Sediment Delivery Ratio in SATEEC)

  • 박윤식;김종건;김남원;김기성;최중대;임경재
    • 한국물환경학회지
    • /
    • 제23권5호
    • /
    • pp.650-658
    • /
    • 2007
  • The Universal Soil Loss Equation (USLE) has been used in over 100 countries to estimate potential long-term soil erosion from the field. However, the USLE estimated soil erosion cannot be used to estimate the sediment delivered to the stream networks. For an effective erosion control, it is necessary to compute sediment delivery ratio (SDR) for watershed and sediment yield at watershed outlet. Thus, the Sediment Assessment Tool for Effective Erosion Control (SATEEC) was developed to compute the sediment yield at any point in watershed. In this study, the SATEEC was applied to the Sudong watershed, Chuncheon Gangwon to compare the sediment yield using area-based sediment delivery ratio (SDRA) and slope-based sediment delivery ratio (SDRS) at watershed outlet. The sediment yield using the SDRA by Vanoni, SYA and the sediment yield using the SDRS by Willams and Berndt, SYS were compared for the same sized watersheds. The 19 subwatersheds was 2.19 ha in size, the soil loss and sediment yield were estimated for each subwatershed. Average slope of main stream was about 0.86~3.17%. Soil loss and sediment yield using SDRA and SDRS were distinguished depending on topography, especially in steep and flat areas. The SDRA for all subwatersheds was 0.762, however the SDRS were estimated in the range of 0.553~0.999. The difference between SYA and SYS was -79.74~27.45%. Thus site specific slope-based SDR is more effective in sediment yield estimation than area-based SDR. However it is recommended that watershed characteristic need to be considered in estimating yield behaviors.

Sediment Erosion and Transport Experiments in Laboratory using Artificial Rainfall Simulator

  • Regmi, Ram Krishna;Jung, Kwansue;Nakagawa, Hajime;Kang, Jaewon;Lee, Giha
    • 한국지반환경공학회 논문집
    • /
    • 제15권4호
    • /
    • pp.13-27
    • /
    • 2014
  • Catchments soil erosion, one of the most serious problems in the mountainous environment of the world, consists of a complex phenomenon involving the detachment of individual soil particles from the soil mass and their transport, storage and overland flow of rainfall, and infiltration. Sediment size distribution during erosion processes appear to depend on many factors such as rainfall characteristics, vegetation cover, hydraulic flow, soil properties and slope. This study involved laboratory flume experiments carried out under simulated rainfall in a 3.0 m long ${\times}$ 0.8 m wide ${\times}$ 0.7 m deep flume, set at $17^{\circ}$ slope. Five experimental cases, consisting of twelve experiments using three different sediments with two different rainfall conditions, are reported. The experiments consisted of detailed observations of particle size distribution of the out-flow sediment. Sediment water mixture out-flow hydrograph and sediment mass out-flow rate over time, moisture profiles at different points within the soil domain, and seepage outflow were also reported. Moisture profiles, seepage outflow, and movement of overland flow were clearly found to be controlled by water retention function and hydraulic function of the soil. The difference of grain size distribution of original soil bed and the out-flow sediment was found to be insignificant in the cases of uniform sediment used experiments. However, in the cases of non-uniform sediment used experiments the outflow sediment was found to be coarser than the original soil domain. The results indicated that the sediment transport mechanism is the combination of particle segregation, suspension/saltation and rolling along the travel distance.

서낙동강 유역의 강물, 저토 및 토양의 중금속 분포 특성 (The Distribution Characteristics of Heavy Metals in the Water, Sediment and Soil along the West Nakdong River)

  • 박흥재;박종길;박원수
    • 한국환경과학회지
    • /
    • 제3권4호
    • /
    • pp.409-416
    • /
    • 1994
  • This study was Performed to evaluate the contents of heavy metals in water, sediment and soil of the 7 different sampling points along the West Nakdong river, The results were as follows: the concentrations of Zn, p, Pb, Cd, Mn, Cu and As in the sediment were 197.48, 551.85, 67.01, 2.54, 491.39, 42.95 and 10.52ppm, respectively. The concentrations of Zn, p, Pb, Cd, Mn, Cu and As in the soil was 83.32, 482.89, 17.15, 1.02, 226.02, 26.15 and 7.29ppm, respectively. The concentration ratios of heavy metals In the water to the sediment were 593 - 12700 (Cd >> Cu > Zn > Mn > As > Pb) and that of the water to the soil were 152 - 5100 (Cu > Cd > Zn > Mn > As >Pb). The correlation coefficients of Cu and Pb weve high among the water, sediment and soil. Because the accumulation amounts of heavy metal in the sediment were high, the concentration of heavy metals in the sediment was higher than in soil. The correlation coefficient of heavy metals among water, sediment and soil was high (0.79 - 0.95). Key Words Distribution Characteristics, heavy metals, West Nakdong River.

  • PDF

농업용수로 구조적 형상 변화에 따른 퇴적 특성 연구 (Research on the Sediment Characteristics in Change Structural Shape of Agricultural Irrigation)

  • 박정구;김명환;송창섭
    • 한국농공학회논문집
    • /
    • 제57권6호
    • /
    • pp.69-77
    • /
    • 2015
  • The objective of this study was to evaluate the performance of selected sediment reduction methods to reduce sediment discharges from drain and irrigation of different types (concrete canals, soil canals). This study was carried out to analysis for the suspended sediment concentration and sediment of drain and irrigation by velocity of flow. The results of study were analysised and summerized as follow. Sedimentation characteristics and size of soil sediment from the concrete and soil canals of downstream smaller than upstream. Suspended sediment concentration and flow times from the suggestion canals bigger than open canal. Structural shape of the canal decreases the velocity of flow also affects the suspended sediment concentration and flow times.

현장실험을 통한 침사구의 효과 분석 (Field Experimental Analysis of Effects of Sediment Traps)

  • 최경숙;장정렬
    • 한국관개배수논문집
    • /
    • 제21권1호
    • /
    • pp.99-108
    • /
    • 2014
  • This study investigated the effects of NPS(non point source) pollution reduction of sediment traps through field experiments. Various sizes of 4 sediment traps were applied in a upland field located in Gunwi and assessed the infiltration and storage effects as well as NPS pollution reduction effects of this technique. The characteristics of deposited soil in the sediment traps were also analyzed including distribution of particle size, soil texture, and chemical properties. The results showed that slightly different composition of soil particle size from each sediment trap with high proportion of 0.15mm and 0.25mm ranges of soil particle diameters, while the loamy sand is the main types of deposited soils in the sediment traps. Decreased NPS pollution were observed from the water quality analysis of the samples taken from the sediment traps. Further research need to be proceeded continuously to improve this technique in order to utilize on upland fields for management of agricultural NPS pollutions.

  • PDF

소유역의 효과적인 침식조절을 위한 유사평가 툴(SATEEC)의 개발 (Development of Sediment Assessment Tool for Effective Erosion Control (SATEEC) in Small Scale Watershed)

  • Kyoung-Jae Lim;Joong-Dae Choi;Ki-Sung Kim;Myung Sagong;Bernard A. Engel
    • 한국농공학회지
    • /
    • 제45권5호
    • /
    • pp.85-96
    • /
    • 2003
  • The Revised Universal Soil Loss Equation (RUSLE) has been used in over 100 countries to estimate potential long-term soil erosion from the field. However, the RUSLE estimated soil erosion cannot be used to estimate the sediment delivered to the stream networks. For an effective erosion control, it is necessary to compute sediment delivery ratio (SDR) for watershed and sediment yield at watershed outlet. Thus, the Sediment Assessment Tool for Effective Erosion Control (SATEEC) was developed in this study to compute the sediment yield at any point in the watershed. To compute spatially distributed sediment yield map, the RUSLE was first integrated with the ArcView GIS and three area based sediment delivery ratio methods were incorporated in the SATEEC. The SATEEC was applied to the Bangdong watershed, Chuncheon, Gangwon Province to demonstrate how it can be used to estimate soil loss and sediment yield for a watershed. The sediment yield using USDA SDR method is 8,544 ton/year and 4,949 ton/year with the method by Boyce. Thus, use of watershed specific SDR is highly recommended when comparing the estimated sediment yield with the measured sediment data. The SATEEC was applied with hypothetical cropping scenario and it was found that the SATEEC can be used to assess the impacts of different management on the sediment delivered to the stream networks and to find the sediment source areas for a reach of interest. The SATEEC is an efficient tool to find the best erosion control practices with its easy-to-use interface.

RUSLE와 GRID를 이용한 하천의 토양유실량 및 유사유출량 산정방법별 비교분석 (Comparative Analysis by Soil Loss and Sediment Yield Analysis Calculation Method of River using RUSLE and GRID)

  • 박의정;김철
    • 한국지리정보학회지
    • /
    • 제10권2호
    • /
    • pp.112-121
    • /
    • 2007
  • 유역에서 발생하는 토양침식의 경우 하천과 가까운 거리에 있는 토사는 하천으로 유입될 가능성이 크지만 하천으로부터 멀리 떨어진 토사는 강우에 의해 하천으로 이송되는 양이 줄어든다. 하천의 유사유출량을 예측하는 것은 유역과 하천의 관리측면에서 기본적인 사항이다. 따라서 유역에서 발생되는 토사량 중 하천으로의 유사유출량을 계산해 낼 필요가 있다. 본 연구의 목적은 유역에서의 토양유실량을 계산하고 강우 시 유출되어 하천으로 유입되는 유사유출량을 예측하여 하천의 유사유출량을 분석하는 것이다. 하천의 유사유출량을 분석하는 방법은 여러 가지가 있으나 본 연구에서는 RUSLE와 GRID를 이용하여 토양유실량을 계산하고, 유사전달비 방법과 경험적 방법을 이용하여 유사유출량을 산정하였다. GIS를 이용하여 유역의 DEM자료와 경사도, 토양도, 토지이용도를 구축하여 RUSLE의 입력자료로 사용하였다. 연구대상지역은 광주광역시에 있는 영산강상류 유역을 선정하였다. 토양유실량은 LS인자를 계산하는 방법에 따라 3가지 방법을 적용하였고 각 방법별로 2가지의 유사전달비 추정방법을 적용하여 6가지 경우에 대해 유사유출량을 산정하였다. 그리고 건교부의 경험적 방법에 의한 유사유출량과 상대적 크기를 비교하였다. 본 연구에서 산정된 유사유출량은 댐이나 하도의 계획, 설계, 관리, 재해영향평가에 활용될 수 있을 것이다.

  • PDF