• Title/Summary/Keyword: soil saturation

Search Result 452, Processing Time 0.023 seconds

Growth and Photosynthetic Characteristics of Atractylodes japonica by Light Controls and Leaf Mold Treatment in Forest Farming (임간재배 시 광조절과 부엽토 처리에 따른 삽주의 생육 및 광합성 특성)

  • Jeon, Kwon Seok;Song, Ki Seon;Choi, Kyu Seong;Kim, Chang Hwan;Park, Yong Bae;Kim, Jong Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.2
    • /
    • pp.161-167
    • /
    • 2015
  • This study was carried out to determine the effects of light controls and leaf mold on root growth and physiological responses of Atractylodes japonica growing in forest farming. The experiment was performed by light controls (100%, 62.5%, 40.3% and 19.7% of full sunlight) and application of leaf mold to soil. Height, stem diameter, number of flower buds and root collar diameter were the highest in leaf mold within 62.5% of full sunlight (relative light intensity 62.5%). And these were the higher in leaf mold within each light level. As the shading level increased, light saturation point and maximum photosynthesis rate decreased. As the light level decreased, SPAD value increased in control and leaf mold. As a result of surveying the whole experiment, A. japonica was judged worse root growth under the lower light level. It was concluded that the light level was one of the most important factors to produce A. japonica. Also, producing high-quality of A. japonica with the price competitiveness by using leaf mold like the experiment can be an effective way to increase incomes for farmers.

Fragmentation and energy absorption characteristics of Red, Berea and Buff sandstones based on different loading rates and water contents

  • Kim, Eunhye;Garcia, Adriana;Changani, Hossein
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.151-159
    • /
    • 2018
  • Annually, the global production of construction aggregates reaches over 40 billion tons, making aggregates the largest mining sector by volume and value. Currently, the aggregate industry is shifting from sand to hard rock as a result of legislation limiting the extraction of natural sands and gravels. A major implication of this change in the aggregate industry is the need for understanding rock fragmentation and energy absorption to produce more cost-effective aggregates. In this paper, we focused on incorporating dynamic rock and soil mechanics to understand the effects of loading rate and water saturation on the rock fragmentation and energy absorption of three different sandstones (Red, Berea and Buff) with different pore sizes. Rock core samples were prepared in accordance to the ASTM standards for compressive strength testing. Saturated and dry samples were subsequently prepared and fragmented via fast and dynamic compressive strength tests. The particle size distributions of the resulting fragments were subsequently analyzed using mechanical gradation tests. Our results indicate that the rock fragment size generally decreased with increasing loading rate and water content. In addition, the fragment sizes in the larger pore size sample (Buff sandstone) were relatively smaller those in the smaller pore size sample (Red sandstone). Notably, energy absorption decreased with increased loading rate, water content and rock pore size. These results support the conclusion that rock fragment size is positively correlated with the energy absorption of rocks. In addition, the rock fragment size increases as the energy absorption increases. Thus, our data provide insightful information for improving cost-effective aggregate production methods.

Effect of Permeability Anisotropy on the Effective Radius of Grout Bulb in Horizontal Permeation Grouting - Numerical Study (투수계수 이방성을 고려한 수평 약액 그라우트 구근의 침투 유효 반경에 관한 수치해석적 연구)

  • Baek, Seung-Hun;Joo, Hyun-Woo;Kwon, Tae-Hyuk;Han, Jin-Tae;Lee, Ju-Hyung;Yoo, Wan-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.149-156
    • /
    • 2020
  • Permeation grouting effectively enhances soil strength and decreases permeability of soil; however, the flow of grout is heavily affected by anisotropy of hydraulic conductivity in layers. Therefore, this study investigates the effect of permeability anisotropy on the effective radius of horizontal permeation grout using computational fluid dynamics (CFD). We modeled the horizontal permeation grout flow as a two-phase viscous fluid flow in porous media, and the model incorporated the chemical diffusion and the viscosity variation due to hardening. The numerical simulation reveals that the permeability anisotropy shapes the grout bulb to be elliptic and the dissolution-driven diffusion causes a gradual change in grout pore saturation at the edge of the grout bulb. For the grout pore saturations of 10%, 50% and 90%, the horizontal and vertical radii of grout bulb are estimated when the horizontal-to-vertical permeability ratio varies from 0.01 to 100, and the predictive model equations are suggested. This result contributes to more efficient design of injection strategy in formation layers with permeability anisotropy.

Transport behavior of a surfactant tracer(CPC) with Langmuir type adsorption isotherm on NAPL-water interface in a homogeneous porous medium (NAPL-물 계면에서 Langmuir형 흡착특성을 보이는 계면추적자(CPC)의 다공성 균질매질내 유동특성)

  • 김헌기;문희수;이상훈
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.3-13
    • /
    • 2001
  • It has been known that nonlinear characteristics of sorption affect the transport behavior of water soluble pollutants in soils. However detailed experimental studies have not been performed to verify the effect of non-linearity of adsorption isotherm on transport of chemicals in porous media. In this research, the distortion of breakthrough curves of a cationic surfactant (cetylpyridinium chloride, CPC) in a engineered stainless steel column packed with glass beads were investigated. Glass beads with about 110 $\mu\textrm{m}$diameter coated with a thin n-decane film were used as the media providing the sorption surface for CPC. The CPC adsorption isotherm on the surface of n-decane from aqueous solution was a typical Langmuir type. The breakthrough curve of CPC using step Input showed a late breakthrough on the front side and early breakthrough on the back side accordance to the shape of the isotherm. The retardation factor of CPC was found to be a strong function of the input concentration, which also a manifestation of the non-linearity of the isotherm. The retardation factors for the CPC with step input agreed with those of pulse input that the maximum concentrations are controlled to be the same as the step input concentrations. This results support the validity of the unproven field practices of using hydrogeotracers with non-linear adsorption isotherms to determine the hydrogeological parameters, e.g., NAPL saturation, air-water or NAPL-water interfacial areas.

  • PDF

A Study on the Removal of Ammonia by Using Peat Biofilter (미생물 활성토탄을 이용한 암모니아 제거에 관한 연구)

  • Choung, Youn Kyoo;Ahn, Jun Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.655-668
    • /
    • 1994
  • Conventional deodorization filters using soil and compost reach the capacity limitation of deodorization in short period, because its removal mechanism primarily depends on adsorption. Therefore, in this study the experiment was performed on the removal of ammonia which is a strong inorganic malodor, frequently emitted from night soil treatment plants and sewage treatment plants, by seeding activated sludges on the bio-peat containing higher organic contents, water conservation capacity, permeability and lower pressure drop. As a result, in raw peat filter natural ammonia outlet was observed in consequence of pH increase resulted from ammonia ionizing in liquid phase. Ammonia removal mechanism primarily depended on the adsorption onto the anion colloidal substances in peat. In peat bio-filter, theoretical ammonium salts ratio was higher than that of raw peat, resulted from slight pH increase by microorganism activity, however, the experimetal value of ammonia-nitrogen accumulated in bio-peat was lower than that of raw peat because of nitrification by nitrifying bacteria. In the initial reaction period, adsorption was predominant in the ammonia removal mechanism, but nitrification was conspicuous after the middle period. Mass balance of nitrogen was established using experimental data of input $NH_3$ loading, output $NH_3$ loading, $NH_4{^+}$-N, $NO_x$-N, and Org-N. The critical time of unsteady state, which is the maximum activating point of microorganism in bio-filter, was determined using experimental data, and the ammonia adsorption curve was computed using regression analysis. On the basis of the results obtained by above analysis, the delay days for the saturation of adsoption capacity in peat bio-filter was calculated.

  • PDF

Classification of Hydrologic Soil Groups by Infiltration and Permeability in Soil Originated from Lime Stone (석회암 유래 토양의 침투 및 투수속도 평가에 따른 수문유형 분류)

  • Hur, Seung-Oh;Jung, Kang-Ho;Sonn, Yeon-Kyu;Park, Chan-Won;Ha, Sang-Keon;Kim, Jeong-Kyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1197-1204
    • /
    • 2008
  • 강원도 남부(영월)와 충북 제천, 단양 등지에 널리 분포하는 석회암에서 유래된 토양은 점토 및 철분함량이 많은 식질계 토양이며 pH와 염기포화도(Base Saturation)가 높은 붉은색 토양이다. 이 토양은 식양질과 식질 등의 세립(細粒)질로만 구성이 되어 있고 자갈이 있는 토양으로 분류된다. 따라서, 토양의 침투 및 투수속도가 우리나라 토양의 주 모재인 화강암이나 화강편마암 유래 토양과는 다른 양상을 보인다. 본 연구는 세립질 특성을 보이는 석회암 유래 토양의 지표면에서의 침투속도와 토양층위별 투수속도를 측정해 복잡하게 세분되어 있는 토양의 종류를 수문학적인 목적에 따라 단순화하기 위해 만든 수문학적 토양유형을 분류하고자 하였다. 실험을 위해 이용된 토양은 과림, 모산, 장성, 마지, 안미, 평안통의 6개 토양이었고 장력 침투계(Disc tension infiltrometer)와 투수속도 측정계(Guelph permeameter)로 침투 및 투수속도를 측정했다. 현장측정 이후 추정식의 개발을 위해 토양층위별로 시료를 채취하여 실험실조건에서 입도분포, 유기물함량을 측정했다. 토양통별 침투 및 투수속도를 측정한 결과는 유기물 층이 존재하는 과림통은 공극이 많고 토층 내에 나무 및 식물뿌리가 존재해 전체적으로 침투 및 투수속도가 빠른 특성을 보여 수문유형을 A로 분류되었다. 모산통은 토층 내에 자갈함량이 아주 높고 투수속도가 다른 토양에 비해 월등히 빠른 특성을 나타냈으나 50cm이내에서 암반층이 존재하는 관계로 수문유형이 C로 분류되었다. 토층이 깊지 않은 장성통은 토층 내에 나무 및 식물뿌리가 많고 암석노출지가 존재해 침투속도가 빠름에도 불구하고 C 수문유형으로 분류됐다. 자갈이나 잔돌이 많은 마지통은 잔자갈이 존재하고 침투나 투수속도가 빠른 편으로 A유형이었다. 논으로 사용되는 안미통은 다른 석회암 유래토양에 비해 토층이 깊은 편이며 석회암 충적층에서 유래된 토양으로 선상지 및 곡간지에 분포한다. 관개된 상태에서 로타리 작업에 의해 표토의 특성이 교란되는 논으로 이용되는 특성 때문에 침투 및 투수속도는 느려 C유형으로 분류됐다. 잔돌이 존재하는 평안통은 석회암 붕적, 퇴적층으로부터 유래된 토양으로 산록경사지 및 선상단구에 분포하며 표토층인 A층에서 중입상구조를 보이며 공극이 많고 작물뿌리가 매우 많아 침투속도는 빠르나 B층에서는 점토 함량이 감소했다 증가하면서 토성이 급격히 바뀌는 특성을 나타내 투수속도는 느린 값을 보였으나 수분학적 토양유형은 B유형으로 분류됐다.

  • PDF

Effect of Sodium in Artificial substrate on the Growth, Gas Exchange and Leaf Water Status of Cucumber (Cucumis sativa L.) and Korea Melon(Cucumis melo L.) (상토에 함유된 Na함량이 오이와 참외의 생육, 광합성 및 잎의 수분상태에 미치는 영향)

  • Seo, Young-Jin;Kim, Jong-Su;Kim, Chan-Yong;Park, So-Deuk;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.3
    • /
    • pp.177-183
    • /
    • 2008
  • Sodium is known to reduce a plant growth and yields. However, the relationships between physiological response of seedling and salinity stress caused by growing media are not well understood yet. We conducted experiments to investigate change of some parameters including Na, EC, moisture content in media under different air temperature ($15^{\circ}C$, $25^{\circ}C$), and the response of fruit-vegetables such as cucumber, oriental melon on saline conditions originated from horticultural substrate. Volumetric moisture content of media at $15^{\circ}C$ was 70%, but at $25^{\circ}C$ was decreased by 45% within 22 hrs, showing below optimal matric potential, approximately. During reaction time, the increase of Na concentration was significantly greater in saline substrate than in control. The decrease rate of Na concentration according to supplying irrigation water was higher in saline substrate than in control. $CO_2$ assimilation rate and transpiration rate of Korea melon grown in low temperature were decreased with a Na/cation ratio in hydroponic solution. Water saturation deficit was also increased significantly at $15^{\circ}C$ as compare to $25^{\circ}C$. Saline stress during nursery stage induced a reduction of seedling quality, growth and cucumber yield. The results suggest that the relationship between uncontrolled Na uptake of seedling from saline substrate and meteological condition is responsible for saline stress.

Agro-Environmental Observation in a Rice Paddy under an Agrivoltaic System: Comparison with the Environment outside the System (영농형 태양광 시설 하부 논에서의 농업환경 관측 및 시설 외부 환경과의 비교)

  • Kang, Minseok;Sohn, Seungwon;Park, Juhan;Kim, Jongho;Choi, Sung-Won;Cho, Sungsik
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.3
    • /
    • pp.141-148
    • /
    • 2021
  • Agrivoltaic systems, also called solar sharing, stated from an idea that utilizes sunlight above the light saturation point of crops for power generation using solar panels. It is expected that agrivoltaic systems can realize climate smart agriculture by reducing evapotranspiration and methane emission due to the reduction of incident solar radiation and the consequent surface cooling effect and bring additional income to farms through solar power generation. In this study, to evaluate that agrivoltaic systems are suitable for realization of climate smart agriculture, we conducted agro-environmental observations (i.e., downward/upward shortwave/longwave radiations, air temperature, relative humidity, water temperature, soil temperature, and wind speed) in a rice paddy under an agrivoltaic system and compared with the environment outside the system using automated meteorological observing systems (AMOS). During the observation period, the spatially averaged incoming solar radiation under the agrivoltaic system was about 70% of that in the open paddy field, and clear differences in the soil and water temperatures between the paddy field under the agrivoltaic system and the open paddy field were confirmed, although the air temperatures were similar. It is required in the near future to confirm whether such environmental differences lead to a reduction in water consumption and greenhouse gas emissions by flux measurements.

Study on collapse mechanism and treatment measures of portal slope of a high-speed railway tunnel

  • Guoping Hu;Yingzhi Xia;Lianggen Zhong;Xiaoxue Ruan;Hui Li
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.111-123
    • /
    • 2023
  • The slope of an open cut tunnel is located above the exit of the Leijia tunnel on the Changgan high-speed railway. During the excavation of the open cut tunnel foundation pit, the slope slipped twice, a large landslide of 92500 m3 formed. The landslide body and unstable slope body not only caused the foundation pit of the open cut tunnel to be buried and the anchor piles to be damaged but also directly threatened the operational safety of the later high-speed railway. Therefore, to study the stability change in the slope of the open cut tunnel under heavy rain and excavation conditions, a 3D numerical calculation model of the slope is carried out by Midas GTS software, the deformation mechanism is analyzed, anti-sliding measures are proposed, and the effectiveness of the anti-sliding measures is analyzed according to the field monitoring results. The results show that when rainfall occurs, rainwater collects in the open cut tunnel area, resulting in a transient saturation zone on the slope on the right side of the open cut tunnel, which reduces the shear strength of the slope soil; the excavation at the slope toe reduces the anti-sliding capacity of the slope toe. Under the combined action of excavation and rainfall, when the soil above the top of the anchor pile is excavated, two potential sliding surfaces are bounded by the top of the excavation area, and the shear outlet is located at the top of the anchor pile. After the excavation of the open cut tunnel, the potential sliding surface is mainly concentrated at the lower part of the downhill area, and the shear outlet moves down to the bottom of the open cut tunnel. Based on the deformation characteristics and the failure mechanism of the landslides, comprehensive control measures, including interim emergency mitigation measures and long-term mitigation measures, are proposed. The field monitoring results further verify the accuracy of the anti-sliding mechanism analysis and the effectiveness of anti-sliding measures.

Effect of Light Receiving rate on Growth and Quality of Ginseng Cultivated in Plastic House

  • Sang Young Seo;Jong hyeon Cho;Chang Su Kim;Hyo Jin Kim;Min Sil An;Du Hyeon Yoon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.62-62
    • /
    • 2020
  • Ginseng is a shade-plant cultivated using shading facilities. However, at too low light levels, root growth is poor, and at high light levels, the destruction of chlorophyll reduces the photosynthesis efficiency due to leaf burn and early fall leaves. The ginseng has a lightsaturation point of 12,000~15,000 lux when grown at 15 to 20℃ and 9,500 lux at 25℃. This study was conducted to select the optimal light intensity of 3-year-old ginseng grown in blue-white film plastic house. The seeds were planted in the blue-white film plastic house with different light receiving rate (March 17, 2020). Between April and September, the average air temperature in the house was 20.4-20.7℃. Average soil temperature was 18.3℃-18.5℃. The chemical properties of the test soil was as follows. The pH level was 7.0-7.4, EC was 0.5-0.6 dS/m, OM was at the levels of 33.6-37.7 g/kg, P2O5 was 513.0-590.8 mg/kg, slightly higher than the allowable 400 mg/kg. The amount of light intensity, illuminance, and solar radiation in the blue-white film house was increased as the light-receiving rate increased and the amount of light intensity was found to be 9-14% compared to the open field, 8-13% illuminance and 9-14% solar irradiation respectively. The photosynthesis rate was the lowest at 3.1 µmolCO2/m2/s in the 9% light blue-white plastic house and 4.2 and 4.0 µmolCO2/m2/s in the 12% and 14% light blue-white plastic house, respectively. These results generally indicate that the photosynthesis of plants increases with the amount of light, but the ginseng has a lower light saturation point at high temperatures, and the higher the amount of light, the lower the photosynthetic efficiency. The SPAD (chlorophyll content) value decreased as the increase of light-receiving rate, and was the highest at 32.7 in 9% light blue-white plastic house. Ginseng germination started on April 11 and took 13-15 days to germinate. The overall germination rate was 82.9-85.8%. The plant height and length of stem were long in the 9% light-receiving plastic house. The diameter of stem was thick in the 12-14% light-receiving plastic house. In the 12% and 14% light-receiving plastic house, the length and diameter of taproot was long and thick, so the fresh weight of root per plant was 20 g or more, which was heavier than 16.9 g of the 9% light-receiving plastic house. The disease incidence (Alternaria blight, Gray mold and Damping-off etc.) rate were 0.9-2.7%. The incidence of Sclerotinia rot disease was 7.5-8.4%, and root rot was 0-20.0%. The incidence ratio of rusty root ginseng was 34.4-38.7% level, which was an increase from the previous year's 15% level.

  • PDF