• 제목/요약/키워드: soil runoff

검색결과 810건 처리시간 0.025초

신도시 개발에 따른 첨두유출량과 토양유실량 변화에 관한 연구 -목포시 남악 신도시 개발지를 대상으로- (A Study on the Peak Discharge and Soil Loss Variation due to the New Town Development - In the Case of Namak New Town Development Area -)

  • 우창호;조남열
    • 환경영향평가
    • /
    • 제11권4호
    • /
    • pp.271-280
    • /
    • 2002
  • The purpose of this study is to explore the hydrological impacts and soil loss variation due to the land use change of Namak New Town development area. The analysis of hydrological effects and soil loss variation has been carried out using GIS in this study. In order to estimate the peak runoff volume, the Rational Method which is the most popular technique to predict runoff amounts is used. To estimate the soil loss in the study area, Universal Soil Loss Equation(USLE), which is one of the most comprehensive and useful technique to predict soil erosion is adopted. The result of this study has shown that the peak runoff volume and the total soil loss increase according to the land use change. The peak runoff volume and the total soil loss have been increased about 2 times and about 48 times more than that of pre development. The increasing of the peak runoff volume can be effective erosion, flooding and so on. A careful city planning is the first essential step to minimize the environmental impacts and to construct the ecological city.

집중강우시 우리나라 밭토양의 토성과 경사에 따른 물유출 양상 (Runoff Pattern in Upland Soils with Various Soil Texture and Slope at Torrential Rainfall Events)

  • 정강호;허승오;하상건;박찬원;이현행
    • 한국토양비료학회지
    • /
    • 제40권3호
    • /
    • pp.208-213
    • /
    • 2007
  • 1985년부터 1991년까지 일 강우량 80 mm 이상일 때의 유거량 자료를 이용하여 집중강우시 물유출 양상을 구명하였다. 지표유거가 발생하는 유거 발생 최소 강우량은 지표피복과 경사장에 따라 결정되는 것으로 나타났으며 토성과 경사각에 따라서는 별 차이를 나타내지 않았다. 유거 발생 최소 강우량을 기준으로 그 이후의 유거량은 강우량에 따라 직선적으로 증가하였다. 그러나 이 때의 기울기 즉, 유거율은 토성, 지표 피복형태, 경사각, 경사장에 따라 달라졌다. 유거율은 토성이 세립질로 침투속도가느릴 수록 커졌으며 콩 재배에 비해 물흐름에 대한 저항이 작은 나지에서 컸다. 또한 유거율은 경사각의 제곱근에 비례하여 증가하였으며 경사장이 길어짐에 따라 특정값에 수렴하면서 감소하였다. 이러한 결과를 바탕으로 집중강우 시 유거량을 모사할 수 있는 식을 다음과 같이 개발하였다. $$Runoff=a(s^{0.5}+l^b)(Rainfall-80(1-e^{-bl}))------(9)$$ 이 식에서 a는 토양의 침투특성과 관련된 토양계수, b는 지표 피복의 영향을 나타내는 지표피복계수, s는 경사각(radian), l은 경사장(m)이다. a는 토성에 따라 0.5~0.6으로 나타났으며 세립질일 수록 값이 컸다. b는 피복조건에 따라 나지에서 0.06, 콩 재배시 0.5 정도로 평가되었다.

토양칼럼을 이용한 초기우수 중 염양염류의 수변녹지 토양에서의 제거도 평가 (Soil Column Experiment to Evaluate Removal of Nutrients in Stormwater Runoff by Soil of Riparian Protection Zone)

  • 윤석표;최지용
    • 한국물환경학회지
    • /
    • 제20권3호
    • /
    • pp.231-235
    • /
    • 2004
  • To investigate removal effects of nutrients in stormwater runoff by soil of riparian protection zone, soil column experiment was conducted for 20 months. Artificial stormwater runoff containing phosphate and nitrate was applied on the surface of soil column twice a week, and phosphate and nitrate concentrations were measured from the leached water. Soil of riparian protection zone reduced the released amount of infiltrated water to the surrounding water. After infiltration of 1m depth of soil column, average removal rates of phosphate and nitrate were 97.7 % and 74.7 %, respectively. As main mechanisms of phosphate are adsorption to soil particle and utilization by plants, periodical replacement of soil and harvesting of plant at the end of growing season are required. For the removal of nutrients in stormwater runoff by the soil layer, soil of riparian protection zone has higher hydraulic conductivity to infiltrate stormwater. Sandy soil having hydraulic conductivity of about $1{\times}10^{-2}cm/s$ range might be appropriate for this purpose.

양양 산불지역 지표유출 및 토양침식에 대한 식생회복의 영향 (Effects of Vegetation Recovery for Surface Runoff and Soil Erosion in Burned Mountains, Yangyang)

  • 신승숙;박상덕;조재웅;이규송
    • 대한토목학회논문집
    • /
    • 제28권4B호
    • /
    • pp.393-403
    • /
    • 2008
  • 양양 산불 피해 지역 당해년도의 극심한 지표 변화에 따른 지표유출 및 토양침식을 분석하기 위해 산불 산지사면에 10개의 소규모 조사구를 설치하여, 지형, 토양, 식생, 강우사상별 유출 및 토양침식량을 측정하였다. 조사는 총 15개 단일강우사상을 기준하여 이루어졌다. 산불이후 식생회복이 빠른 지역과 그렇지 않은 사면의 유출 및 토양침식량은 매우 큰 차이를 보였다. 식생회복이 빠른 조사구들은 대조구보다 약 2배 많은 평균 유출량 및 토양침식량을 나타냈으나, 나지상태 조사구들에서는 대조구의 약 10배 이내의 유출 및 토양침식이 발생되었다. 지표유출 및 토양침식에 대한 주요 인자들과의 상관분석에 의하면 강우인자 및 식생인자는 유출과 토양침식에 상당한 영향을 미쳤다. 유출 및 토양침식 민감도는 식생지수들과 높은 상관성을 보였다. 산불에 의해 교란된 지표식생이 시간이 경과함에 따라 회복되고, 산불초기에 다량의 토사유출이 발생된 이후 사면 토양의 안정화에 따라 전반적으로 유출 및 토양침식량이 감소하였다. 그러나 식생회복이 안되거나, 식생회복이 더딘 지역은 지속적으로 유출 및 토양침식이 발생하기 때문에 산불 지역별로 차별화된 대응전략 수립이 필요하다.

End-Member Mixing Analysis를 이용한 산림 소유역의 임상별 유출분리 비교 (Comparing of Hydrograph Separation in deciduous and coniferous catchments using the End-Member Mixing Analysis)

  • 김수진;최형태
    • 한국지형학회지
    • /
    • 제23권1호
    • /
    • pp.77-85
    • /
    • 2016
  • To understand the difference of runoff discharge processes between Gwangneung deciduous and coniferous forest catchments, we collected hydrological data (e.g., precipitation, soil moisture, runoff discharge) and conducted hydrochemical analyses in the deciduous and coniferous forest catchments in Gwangneung National Arboretum in the northwest part of South Korea. Based on the end-member mixing analysis of the three storm events during the summer monsoon in 2005, the hillslope runoff in the deciduous forest catchment was higher 20% than the coniferousforest catchment during the firststorm event. Howerver, hillslope runoff increased from the second storm event in the coniferous catchment. We conclude that low soil water contents and topographical gradient characteristics highly influence runoff in the coniferous forest catchment during the first storm events. In general, coniferous forests are shown high interception loss and low soil moisture compared to the deciduous forests. It may also be more likely to be a reduction in soil porosity development when artificial coniferous forests reduced soil biodiversity. The forest soil porosity is an important indicator to determine the water recharge of the forest. Therefore, in order to secure the water resources, it should be managed coniferous forests for improving soil biodiversity and porosity.

산지에서의 환경보전형 농업을 위한 토양의 질 평가 -토양의 물리적 특성과 유사자료 수집 - (Soil Quality Assessment for Environmentally Sound Agriculture in the Mountainous Soils - Physical Properties of the Soil and Collection of Sediment Data -)

  • 최중대;김정제;양재의;정진철;윤세영
    • 한국농공학회지
    • /
    • 제40권4호
    • /
    • pp.85-93
    • /
    • 1998
  • In the 2nd year study of a 5 year project to evaluate the soil quality and develop the best management practices for mountaineous soils, 11 runoff plots were treated and monitored with respect to physical property of the soil, runoff and sediment discharge, and the following results were obtained. 1. Bulk density and porosity did not show any siginificant difference between experimental treatments. 2. Runoff was basically dependent on the soil's physical property and tillage. Up-and-down plots showed the highest runoff while contour plots the lowest runoff. 3. Sediment yield in the mountaineous soils was directly related to tillage and residue cover. Residue covered plots showed the lowest sediment yield and up-and-down plots the highest sediment yield. And it is recommended that the best management practices using till_age and residue cover for the mountaineous soils must be developed to protect soil quality and maintain agricultural productivity.

  • PDF

경사지에서 고추 정식시기에 따른 토양유실과 유출수에 대한 식생피복 효과 (Effect of Red Pepper Canopy Coverages on Soil Loss and Runoff from Sloped Land with Different Transplanting Dates)

  • 조희래;하상건;현승훈;허승오;한경화;홍석영;전상호;김은진;이동성
    • 한국토양비료학회지
    • /
    • 제43권3호
    • /
    • pp.260-267
    • /
    • 2010
  • As sloped farmland is subject to runoff and soil erosion and consequently require appropriate vegetative coverage to conserve soil and water, a field study was carried out to evaluate the impact of crop canopy coverage on soil loss and runoff from the experimental plot with three different textural types (clay loam, loam, and sandy loam). The runoff and soil loss were examined at lysimeters with 15% slope, 5 m in length, and 2 m in width for five months from May to September 2009 in Suwon ($37^{\circ}$ 16' 42.67" N, $126^{\circ}$ 59' 0.11" E). Red pepper (Capsicum annum L. cv. Daechon) seedlings were transplanted on three different dates, May 4 (RP1), 15 (RP2), and 25 (RP3) to check vegetation coverage. During the experimental period, the vegetation coverage and plant height were measured at 7 day-intervals and then the 'canopy cover subfactor' (an inverse of vegetation cover) was subsequently calculated. After each rainfall ceased, the amounts of soil loss and runoff were measured from each plot. Under rainfall events >100 mm, both soil loss and runoff ratio increased with increasing canopy cover subfactor ($R^2$=0.35, p<0.01, $R^2$=0.09, p<0.1), indicating that as vegetation cover increases, the amount of soil loss and runoff reduces. However, the soil loss and runoff were depending on the soil texture and rainfall intensity (i. e., $EI_{30}$). The red pepper canopy cover subfactor was more highly correlated with soil loss in clay loam ($R^2$=0.83, p<0.001) than in sandy loam ($R^2$=0.48, p<0.05) and loam ($R^2$=0.43, p<0.1) plots. However, the runoff ratio was effectively mitigated by the canopy coverage under the rainfall only with $EI_{30}$<1000 MJ mm $ha^{-1}hr^{-1}$ ($R^2$=0.34, p<0.05). Therefore, this result suggested that soil loss from the red pepper field could be reduced by adjusting seedling transplanting dates, but it was also affected by the various soil textures and $EI_{30}$.

산림환경 변화가 토양내 수저유능력과 유출에 미치는 영향 (Effect of change in forest environment on water storage capacity in soil and streamflow)

  • 남이;박승기
    • 한국토양환경학회지
    • /
    • 제2권2호
    • /
    • pp.35-51
    • /
    • 1997
  • 강원도 평창군 연평면과 용평면 일원에 위치한 백옥포유역과 이목정유역에서 산림의 환경변화(임상차이 및 피해목 벌채)가유출과토양내 수저유능력에 미치는 영향을 구명하기 위하여 1983∼1993년의 유출량, 유출률, 유황곡선등을 분석하였다. 또한 유출 구성성분중 총유출량, 직접유출량, 토양내 가비중, 전공극량, 조공극, 세공극, 투수성, 유출가능수량을 분석하였다. 유출을, 유출량, 유황곡선은 임상이 불량한 이목정유역이 임상이 양호한 백옥포유역보다 높게 나타났으며, 두시험유역 모두에서 전처리기간이 처리기간보다 낮게 나타났다. 또한 벌채에 의한 산림환경변화에 따라 융설촉진 현상이 처리기간에 크게 일어났으며, 융설지연 현상으로 인한 산림효과가 전처리기간에 나타났다 산림환경변화에 따른 토양의 물리적 성질중 가비중, 전공극량(조공극, 세공극), 투수성, 유출가능수량에서도 백옥포유역이 이목정유역보다 양호하였으며, 두 시험유역 모두에서 전처리기간이 처리기간보다 양호한 결과를 나타내어 산림환경 변화에 따른 수자원함양기능의 중요성을 제시하였다.

  • PDF

공동주택단지 내 인공지반 녹지조성 형태에 따른 우수유출 저감효과 (A Study on Runoff Water Reduction Effects According to Shapes of Formation of Artificial Soil Green Area in Multi-Housing Complex)

  • 남미아;장대희;김현수
    • KIEAE Journal
    • /
    • 제13권1호
    • /
    • pp.9-15
    • /
    • 2013
  • This study aims to analyze, by forming an experimental area of artificial soil green area that is of equal scale and analyzing the characteristics of runoff water in accordance with the cross-section configuration, applied the benefits in an actual multi-housing case study complex. In examining the measurement test results of the runoff water infiltration amount and surface runoff amount of a low-profile type green area(Dish type) and a general type green area(Mound type), Dish type was seen to have 1.5-times higher runoff water infiltration amount than Mound type during heavy rainfalls and showed about a 50% reduction with respect to the surface runoff amount. In other words, artificial soil green area offers the benefit of reduction of surface runoff amount and suggests, in actuality even with a change to the cross-sectional configuration of artificial soil green area alone at the time of construction of multi-housings, the possibility of benefits and reduction of costs spent on existing rainwater management facilities.

RUSLE을 위한 반월 주기 강우가식성인자 산정 (Computing the Half-Month Rainfall-Runoff Erosivity Factor for RUSLE)

  • 강문성;박승우;임상준;김학관
    • 한국농공학회지
    • /
    • 제45권3호
    • /
    • pp.29-40
    • /
    • 2003
  • The objective of the paper is to compute the half-month rainfall-runoff erosivity factor for revised universal soil loss equation (RUSLE). RUSLE is being used to develop soil conservation programs and identify optimum management practices. Rainfall-runoff erosivity factor (R) is a key input parameter to RUSLE. Rainfall-runoff erosivity factor has been calculated for twenty six stations from the nationwide rainfall data from 1973 to 2002 in south Korea. The average annual Rainfall-runoff erosivity factor at the analyzed stations Is between 3,130 and 10,476 (MJ/ha)ㆍ(mm/h). According to the computation of the half-month Rainfall-runoff erosivity factor for locations, 66-85% of the average annual R value has occurred during the summer months, June-August. The half-month R values from this study can be used for RUSLE.