• Title/Summary/Keyword: soil quality standards

Search Result 93, Processing Time 0.026 seconds

Chemical Ranking and Scoring Methodology for the Drinking and non-drinking Groundwater pollutants: CROWN (Chemical Ranking of Groundwater PollutaNts) (음용 및 비음용 지하수 우선관리대상 항목 선정기법: CROWN (Chemical Ranking of Groundwater PollutaNts))

  • An, Youn-Joo;Lee, Woo-Mi;Jeong, Seung-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.16-25
    • /
    • 2013
  • The Korean groundwater law regulates 20 groundwater contamination parameters, including 14 specific harmful substances. Expanding the number of groundwater quality standards are needed to cope with recent groundwater quality deterioration due to the use of various chemicals. Chemical ranking and scoring system (CRS) is a scientific tool to sort priority chemicals by considering exposure and toxicity potentials. In this study, we developed a CRS for scoring and ranking of possible groundwater pollutants and screened priority substances to be later considered in the Korean standard expansion. Chemical Ranking Of groundWater pollutaNts (CROWN) incorporates important parameters consisting of exposure potential, human and water ecotoxicity, interests, and certainty. Furthermore, CROWN additionally evaluated existence of other media standards to consider impacts by contamination of other media. The 197 substances that were common to 9 countries were selected first. CROWN evaluated and ranked each chemical, and finally suggested priority substances. Suggested priority substances were classified into two groups according to the groundwater use purposes: drinking and non-drinking. The priority substances were further classified into $1^{st}$ and $2^{nd}$ group priorities. The $1^{st}$ group consists of 75 substances, including the all the Korean groundwater standard parameters. CROWN will be used in selecting groundwater pollutants for possible inclusion in the Korean standard expansion.

Relationship between Soil Management Methods and Soil Chemical Properties in Protected Cultivation

  • Kang, Yun-Im;Lee, In-Bog;Par), Jin-Myeon;Kang, Yong-Gu;Kim, Seung-Heui;Ko, Hyeon-Seok;Kwon, Joon-Kook
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.4
    • /
    • pp.333-339
    • /
    • 2009
  • Various cultural practices have been promoted as management options for enhancing soil quality and health. The use of soil management methods can cause changes in fertility by affecting soil chemical properties. This study aimed to evaluate interactions between soil chemical properties and soil management methods in protected cultivation, and to classify soil management methods that similarly affect soil chemical properties. Water-logging and irrigation reduced soil pH and available $P_2O_5$ content. Application of animal manures has a positive effect on levels of organic matter, Av.$P_2O_5$, K, Zn, and Cu. The electrical conductivites tened to be low in the application of organic amendments, including rice and wood residues. Deeper plowing caused a reduction in Ca content. Practicing soil nutrient-considering fertilization and fertigation did not exert an influence on nutrient element contents. In a cluster analysis of the soil management methods according to major nutrients, low similarities were found with deeper plowing and crop rotation with rice in comparison with other practices. In a cluster analysis by minor nutrient characteristics, crop rotation and application of animal manures and rice residues were linked at a high Ward's distance, while other practices were found to be relatively low distinct. Each soil management method has a similar or different effect on soil chemical properties. These results suggest the necessity of establishing limits and standards according to the effects of soil management methods on soil chemical properties for economic soil practices.

Decadal Changes in Subsoil Physical Properties as Affected by Agricultural Land Use Types in Korea (농업적 토지이용에 따른 토양물리성 변동 평가)

  • Cho, Hee-Rae;Zhang, Yong-Seon;Han, Kyung-Hwa;Ok, Jung-Hun;Hwang, Seon-Ah;Lee, Hyub-Sung;Kim, Dong-Jin
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.567-575
    • /
    • 2018
  • The soil physical quality is a core factor in achieving two of sustainable agriculture's goals: productivity and environment. The purpose of this study was to assess changes in soil physical properties for nearly a decade through periodic monitoring of three cultivation types: upland, orchard, and paddy. Field surveys and lab analysis were conducted to determine the soils physical properties after every 4 years; upland (2009, 2013, and 2017), orchard (2010 and 2014), and paddy (2011 and 2015). In each year soil samples from 162-338 sites were collected. The bulk density of upland subsoil decreased from $1.53Mg\;m^{-3}$ to $1.50Mg\;m^{-3}$ while the plowing depth and subsoil organic matter increased from 13.7 cm to 19.5 cm and from $12.6g\;kg^{-1}$ to $18.3g\;kg^{-1}$ respectively during the period 2009-2017. Plowing depth for orchard increased from 16.7 cm to 18.9 cm. However, organic matter content decreased from $15.9g\;kg^{-1}$ to $15.4g\;kg^{-1}$ during the 2010-2014 period. For paddy, plowing depth and subsoil organic matter decreased from 17.5 cm to 16.7 cm and from $17.5g\;kg^{-1}$ to $15.8g\;kg^{-1}$ respectively. The subsoil bulk density increased from $1.47Mg\;m^{-3}$ to $1.52Mg\;m^{-3}$ from 2011-2015. Excess ratio for soil physical standards increased from 16% to 22% in orchard, 56% to 62% in paddy, and decreased from 41% to 29% in upland. The overall soil physical quality had been ameliorated for upland, but degraded for paddy. Improved tillage practices and application of appropriate organic matter is necessary to enhance the quality of soils, especially in the paddy field.

The Influence of Land Use on the Concentration Levels and Distribution Characteristics of Polycyclic Aromatic Hydrocarbons (PAHs) in Korea (국내 토지이용도별 토양 중 다환방향족탄화수소류(PAHs)의 농도 수준 및 분포 특성)

  • Noh, Hoe-Jung;Yoon, Jeong Ki;Yun, Dae-Geun;Yu, Soon-Ju;Kim, Tae Seung;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.6
    • /
    • pp.59-71
    • /
    • 2014
  • We investigated soil contamination depending on the land use by examining the contamination levels and distribution characteristics of 16 polycyclic aromatic hydrocarbons (PAHs) in the national soil. Total PAHs (the sum of 16 PAH concentrations) and carcinogenic PAHs (the sum of seven carcinogenic PAH concentrations) were $8.50{\sim}3,437.16{\mu}g/kg$ and $2.94{\sim}2,136.96{\mu}g/kg$, respectively. The concentration of benzo(a)pyrene, one of the contaminants regulated by the soil quality standard in the nation, was $ND{\sim}924.73{\mu}g/kg$. Its maximum value of $924.73{\mu}g/kg$ was detected in railroad (Region 3) and is approximately 13% of the standard value for Region 3 (i.e., 7 mg/kg). We also investigated the characteristics of contamination sources of PAHs in soil of the upland, forests, roads, and railroads, examining the fraction distribution of PAHs concentration by the number of benzene rings against the total PAHs concentration. The results demonstrate that the mean fraction of 4~6-ring PAHs against total PAHs concentration in soil was in the range of 51.8~80.7% with relative abundance of high-molecular PAHs, showing that the origin of contamination is under the category of combustion sources. When the molecular indices (Flu/(Flu/Pyr), Ant/(Ant+Phe), InP/(InP+BP), and BaA/(BaA+Chr)) were applied, they were also categorized as petroleum-based combustion sources. The individual PAH concentrations in soil by the land use were grouped into Regions 1, 2, and 3, which are statistically treated and are the parts of the national category system of soil quality standard. As a result, the concentration level of 16 PAHs was $0.02{\sim}2.63{\mu}g/kg$ in Region 1, $0.05{\sim}4.26{\mu}g/kg$ in Region 2, and $2.36{\sim}178.27{\mu}g/kg$ in Region 3. The concentration level of 6 carcinogenic PAHs was 14.2~320.4% against that of benzo(a)pyrene in Region 3 and sites of recycling waste sleepers. Considering that there were similarities among PAHs in terms of structures and toxicities, it would be recommended to review other types of carcinogenic PAHs together with benzo(a)pyrene when developing the soil quality standards in the nation.

Applying Weighting Value Method for the Estimation of Monthly Soil Erosion (월별 토사유실량 평가를 위한 가중치 기법의 시험 적용)

  • Lee Geun-Sang;Park Jin-Hyeog;Hwang Eui-Ho;Koh Deuk-Koo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.70-74
    • /
    • 2005
  • Soil particles from rainfall flow into reservoir and give lots of influence In water quality because the geological conditions and landcover characteristics of imha basin have a weakness against soil loss. Especially, much soil particles induced to reservoir in shape of muddy water when it rains a lot because the geological characteristics of imha reservoir are composed of clay and shale layer. Therefore, field turbidity data can be Indirect-standards to estimate the soil erosion of imha basin. This study evaluated annual soil erosion using GIS-based RUSLE (Revised Universal Soil Loss Equation) and developed rainfall weighting value method using time-series rainfall data to estimate monthly soil erosion. In view of field turbidity data(2003 yr), we can find out monthly soil erosion with rainfall weighting value is more efficient than that with monthly rainfall data.

  • PDF

Derivation of Agricultural Water Quality Guidelines for Heavy Metals in Korea (국내 농업용수의 유해중금속 수질권고기준 도출)

  • An, Youn-Joo;Baek, Yong-Wook;Lee, Woo-Mi;Yoon, Chun-Gyeong
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.533-536
    • /
    • 2008
  • Korean water quality guidelines for agricultural were derived to protect agricultural water uses according to the Canadian methodology. The adverse effect of heavy metals in agricultural water was of concern due to its persistence, bioaccumulation and ecotoxicity to crop plants. The ecotoxicity data of cadmium, copper, lead, and zinc were collected for the crops grown in Korea, and used to estimate the species maximum acceptable toxicant concentration (SMATC), which corresponds to the water quality guideline. Values of irrigation per year and soil bulk density were revised to reflect the Korean situation. The estimated guideline values for cadmium, copper, lead, and zinc were 0.01, 0.5, 0.1, and 1.0 mg/L, respectively. These values are in agreement with the agricultural water quality guidelines of foreign countries and current Korean water quality standard for the protection of public health. Current water quality standards in agricultural uses were for management of public water resource, and was not prepared to protect crop plants from contaminants. The results of this study will be a basis for the designation of Korean water quality guidelines for the protection of agricultural water uses in the future.

Nutrient Recycling : The European Experience - Review -

  • Hall, J.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.667-674
    • /
    • 1999
  • Intensive livestock production has increased dramatically in Europe since the 1960s, particularly. in Northern and Central European countries, resulting in large increases in the nutrient pollution of surface and ground waters and in atmospheric emissions of ammonia. This has arisen due to inadequate management of the large amounts manure produced, particularly where there has been insufficient land area used for efficient nutrient reuse in crop production. Nutrient pollution from intensive livestock production has progressively degraded the quality of water resources in many parts of Europe, with eutrophication of many inland and coastal waters, as well as soil acidification and ecosystem degradation. These problems have been known for many years, and although there are various international agreements on transboundary pollution, it is largely left to individual countries to set and enforce standards. Consequently, a number of different approaches are employed, although the common feature of these is to encourage farmers to use the nutrients in animal manures efficiently according to crop requirements, which also reduces the potential for accumulation in soil and subsequent loss to the environment. This paper reviews nutrient production and use in Europe and some of the strategies employed to avoid and reduce nutrient pollution.

Comparative Assessment of Good Agricultural Practices Standards in Agricultural Product Quality Control Act with respect to Produce Safety Rule in Food Safety Modernization Act (식품안전현대화법의 농산물안전규칙과 농산물품질관리법의 농산물우수관리기준 비교평가)

  • Yoon, Deok-Hoon
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.1
    • /
    • pp.12-22
    • /
    • 2018
  • The US government has enacted the Food Safety Modernization Act (FSMA) in 2011, which is being phased in and planned. The final Rules of Produce Safety focus on biological hazards related to agricultural production, harvesting, packaging and storage, which are being phased in since 2017 depending on farm scale. As a result of comparison with the Korean-GAP (Good Agricultural Practices) standards, it is difficult to compare the two standards to be compared with each other by 1:1. However, many of the Korean-GAP standards are similar to FSMA Produce Safety rules. However, the Korean-GAP standards can be judged differently according to the evaluator as a comprehensive standard, so the details of the standards need to be reinforced. In terms of the provisions, the Korean-GAP standards are the most appropriate for the safety of workers (FSMA Subpart D), followed by livestock and wild animals (FSMA Subpart I), buildings, equipment and tools (FSMA Subpart L) and harvesting activities (FSMA Sub-part K). However, there are some weaknesses in the field of agricultural water management (FSMA Subpart E) and farm manager's qualifications and training (FSMA Subpart C), and the response to the biological soil amendments of animal origin and human waste (FSMA Subpart F) is weak. The FSMA regulation is not a certification standard, but it is expected that the marbling effect, which is the standard laid down by the United States leading the world food safety standards, is expected to be considerable. Therefore, we hope that the review of the Korean-GAP standards will help improve the quality of agricultural products and expand our exports, since the standard for responding to microbiological safety emphasized in the FSMA regulations is the Korean-GAP standard.

Field Applicability of Low Temperature Thermal Desorption Equipment through Environmental Impact Analysis of Remediated Soil and Exhaust Gas (정화토양 및 배출가스의 환경적 특성 분석을 통한 저온열탈착장치의 현장 적용성 평가)

  • Oh, Cham-Teut;Yi, Yong-Min;Kim, Young-Soung;Jeon, Woo-Jin;Park, Gwang-Jin;Kim, Chi-Kyung;Sung, Ki-June;Chang, Yoon-Young;Kim, Guk-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.3
    • /
    • pp.76-85
    • /
    • 2012
  • Geochemical and ecological properties of remediated soil and gas exhausted from a low-temperature thermal desorption (LTTD) process were analyzed to assess the environmental impact of LTTD treatment. Soil characteristics were examined with regard to the chemical (EC, CEC, and organic matter) and the ecological (dehydrogenase activity, germination rate of Brassica juncea, and growth of Eisenia andrei) properties. The exhaust gases were analyzed based on the Air Quality Act in Korea as well as volatile organic compounds (VOCs) and mixed odor. Level of organic Organic matter of the soil treated by LTTD process was slightly decreased compared to that of the original soil because the heating temperature ($200^{\circ}C$) and retention time (less than 15 minutes) were neither high nor long enough for the oxidation of organic matter. The LTTD process results in reducing TPH of the contaminated soil from $5,133{\pm}508$ mg/kg to $272{\pm}107$ mg/kg while preserving soil properties. Analysis results of the exhaust gases from the LTTD process satisfied discharge standard of Air Quality Law in Korea. Concentration of VOCs including acetaldehyde, propionaldehyde, butyraldehyde and valeraldehyde in circulation gas volatilized from contaminated soil were effectively reduced in the regenerative thermal oxidizer and all satisfied the legal standards. Showing ecologically improved properties of contaminated soil after LTTD process and environmentally tolerable impact of the exhaust gas, LTTD treatment of TPH-contaminated soil is an environmentally acceptable technology.

Recent Trends of Domestic and International Management and Research of Natural Mineral Water Used for Bottled Water (먹는샘물과 병입수로 이용되는 천연 광천수의 국내외 관리와 연구 동향 분석)

  • Koh, Dong-Chan;Ko, Kyung-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.6
    • /
    • pp.9-27
    • /
    • 2018
  • In recent years, the sales of bottled spring water (BSW) have been drastically increasing in Korea and other countries, which accompanied great interests in conservation and reclamation of natural mineral water (NMW). In this study, management and research activities on NMW in Europe, USA, and Codex Alimentarius were reviewed. In each region, NMW is regulated with its own quality standards that differ from ordinary drinking water, and management actions are strictly implemented to protect water resources and to secure quality of NMW. Many studies on NMW were carried out for monitoring inorganic constituents including major and trace elements in national levels for bottled NMW, groundwater, and tap water in other countries. In Korea, NMW became commercialized in 1995 when BSW was legally approved as a drinking water. To further promote utilization of various types of NMW in Korea, regulations and policies for NMW need to be revised in accordance with international NMW management trends. Further, studies of NMW that compile a comprehensive set of physical and chemical parameters of NMW are also needed to properly understand occurrences, hydrogeological and geochemical processes of NMW, as well as to evaluate its potential use as a natural resource.