• Title/Summary/Keyword: soil pressure

Search Result 1,626, Processing Time 0.034 seconds

Earth Pressures Acting on the Rigid Wall under Incremental Load (점증하중에 의한 강성벽체에 작용하는 토압)

  • Chon, Yong-Baek;Kwon, Uk-Hwa
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.247-254
    • /
    • 2002
  • This study has researched the following conclusion to compare to the existing theory and to examine lateral earth pressure, which have measured to add incremental load on sandy soil, and were different in types of compaction by modeling earth pressure test. Lateral earth pressure by incremental load shows that it is increasing at depth forty four centimeters as 2/3H point for wall high, and under 2/3 H point the variation of earth pressure on incremental load is not conspicuous. Therefor, the more a position of surcharge load is close with fixed wall, the more a variation of lateral earth pressure marks considerably. According to relative compaction density of soil, lateral earth pressure turns up larger effective value for layer compaction test to a thickness of thirty three centimeters than layer compaction test to a thickness of twenty centimeters by the roller.

  • PDF

Long-term Behaviour Characteristics of Pressurized Grouting Soil Nails from the Field Pull-Out Tests (현장인발시험을 통한 가압 그라우팅 쏘일네일의 장기 인발거동특성)

  • Park, Si-Sam;Lee, Hoon-Yeoun;Park, Joo-Suck;Lee, Hong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.137-144
    • /
    • 2005
  • Recently a pressurized grouting soil nail is demanded due to problems beyond of economical and engineering purpose. In this study, a newly modified soil nailing technology named as the PGSN (Pressurized Grouting Soil Nailing) system is respected to reduced displacements of nails and increase of global slope stability. And effects of various factors related to the design of the PGSN system, such as the length of the soil nail, injected pressure and W/C ratio of cement grout in the pressurized grouting soil nail are examined throughout a series of the displacement-controlled field pull-out tests. Displacement-controlled field pull-out tests are performed in the present study and the volume of grouting are also evaluated based on the measurements. In addition, both short-term and long-term characteristics of pull-out deformations of the newly proposed PGSN system are analyzed and compared with those of the general soil nailing system by carrying out the stress-controlled field pull-out tests. From the pull-out characteristics of pressurized grouting soil nails, it is found that the effect of the length of the soil nail, injected pressure and W/C ratio of cement grout are important parameters.

  • PDF

An Experimental Study for Soil Pressure Increment Ratios according to Strip Load in Sandy Soil (사질토 지반의 띠하중 재하에 따른 지중응력증가비의 실험적 고찰)

  • Bong, Tae-Ho;Kim, Seong-Pil;Heo, Joon;Son, Young-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.4
    • /
    • pp.21-27
    • /
    • 2011
  • Soil stress distribution under loading is one of the important problems in civil engineering. Many models have been proposed to interpret the stress distribution in soil and most models assume that the soil is homogeneous and isotropic. Therefore, the actual stress distribution may be different. In addition, With the increase of the top load, soil stress does not increase linearly. In this study, vertical stress changes in sandy soil according to top load increase were measured through experiments. Experimental results, vertical soil stress due to top load increase showed an initial nonlinear behavior and when the load increases to some extent, vertical soil stress showed a linear behavior. ${\alpha}$ value obtained by existing theories always 1.00. But, ${\alpha}$ value by experiment was observed from 0.91 to 1.22 and ${\alpha}$ value was increased with increasing distance from the loading plate.

Discrete element modeling of strip footing on geogrid-reinforced soil

  • Sarfarazi, Vahab;Tabaroei, Abdollah;Asgari, Kaveh
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.435-449
    • /
    • 2022
  • In this paper, unreinforced and geogrid-reinforced soil foundations were modeled by discrete element method and this performed under surface strip footing loads. The effects of horizontal position of geogrid, vertical position, thickness, number, confining pressure have been investigated on the footing settlement and propagation of tensile force along the geogrids. Also, interaction between rectangular tunnel and strip footing with and without presence of geogrid layer has been analyzed. Experimental results of the literature were used to validation of relationships between the numerically achieved footing pressure-settlement for foundations of reinforced and unreinforced soil. Models and micro input parameters which used in the numerical modelling of reinforced and unreinforced soil tunnel were similar to parameters which were used in soil foundations. Model dimension was 1000 mm* 600 mm. Normal and shear stiffness of soils were 5*105 and 2.5 *105 N/m, respectively. Normal and shear stiffness of geogrid were 1*109 and 1*109 N/m, respectively. Loading rate was 0.001 mm/sec. Micro input parameters used in numerical simulation gain by try and error. In addition of the quantitative tensile force propagation along the geogrids, the footing settlements were visualized. Due to collaboration of three layers of geogrid reinforcements the bearing capacity of the reinforced soil tunnel was greatly improved. In such practical reinforced soil formations, the qualitative displacement propagations of soil particles in the soil tunnel and the quantitative vertical displacement propagations along the soil layers/geogrids represented the geogrid reinforcing impacts too.

3-D Dynamic Response Characteristics of Seabed around Composite Breakwater in Relation to Wave-Structure-Soil Interaction (파랑-구조물-지반 상호작용에 의한 혼성제 주변 해저지반의 3차원 동적응답 특성)

  • Hur, Dong-Soo;Park, Jong-Ryul;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.505-519
    • /
    • 2016
  • If the seabed is exposed to high waves for a long period, the pore water pressure may be excessive, making the seabed subject to liquefaction. As the water pressure change due to wave action is transmitted to the pore water pressure of the seabed, a phase difference will occur because of the fluid resistance from water permeability. Thus, the effective stress of the seabed will be decreased. If a composite breakwater or other structure with large wave reflection is installed over the seabed, a partial standing wave field is formed, and thus larger wave loading is directly transmitted to the seabed, which considerably influences its stability. To analyze the 3-D dynamic response characteristics of the seabed around a composite breakwater, this study performed a numerical simulation by applying LES-WASS-3D to directly analyze the wave-structure-soil interaction. First, the waveform around the composite breakwater and the pore water pressure in the seabed and rubble mound were compared and verified using the results of existing experiments. In addition, the characteristics of the wave field were analyzed around the composite breakwater, where there was an opening under different incident wave conditions. To analyze the effect of the changed wave field on the 3-D dynamic response of the seabed, the correlation between the wave height distribution and pore water pressure distribution of the seabed was investigated. Finally, the numerical results for the perpendicular phase difference of the pore water pressure were aggregated to understand the characteristics of the 3-D dynamic response of the seabed around the composite breakwater in relation to the water-structure-soil interaction.

Prediction and Measurement of Behaviour of Soft Soil Deposits (연약지반에서 예측 거동과 계측 결과 분석)

  • Kim, Yun-Tae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.351-362
    • /
    • 2007
  • Predicted behaviour of a soft clay deposit in design stage is sometimes different from in-situ settlement and pore pressure measured during and after construction. In this paper, characteristics of settlement and pore pressure occurred in soft soil deposits were investigated briefly in order to get a better understanding of time-dependent viscoplastic behaviour and prevent geotechnical problems resulted from long-term settlement, differential settlement, etc.

  • PDF

Effect of the Earth Pressure Coefficient on the Support System in Jointed Rock Mass

  • Son, Moorak;Adedokun, Solomon;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.2
    • /
    • pp.33-43
    • /
    • 2015
  • This paper investigated the magnitude and distribution of earth pressure on the support system in jointed rock mass by considering different earth pressure coefficients, rock types and joint inclination angles. The study mainly focused on the effect of the earth pressure coefficients on the earth pressure. Based on a physical model test (Son & Park, 2014), extended studies were conducted considering rock-structure interactions based on the discrete element method, which can consider the joints characteristics of rock mass. The results showed that the earth pressure was highly influenced by the earth pressure coefficients as well as the rock type and joint inclination angles. The effects of the earth pressure coefficients increased when the rock suffered more weathering and has no joint slide. The test results were also compared with Peck's earth pressure for soil ground, and clearly showed that the earth pressure in jointed rock mass can be greatly different from that in soil ground. This study indicated the earth pressure coefficients considering the rock types and joint inclination angles are important parameters influencing the magnitude and distribution of earth pressure, which should be considered when designing the support systems in jointed rock mass.

Characterization on the Relationships among Rainfall Intensity, Slope Angle and Pore Water Pressure by a Flume Test : in Case of Gneissic Weathered Soil (산사태 모형실험을 통한 강우강도 및 사면경사 변화와 간극수압과의 관계 연구 : 편마암 풍화토를 대상으로)

  • Chae, Byung-Gon;Lee, Seong-Ho;Song, Young-Suk;Cho, Yong-Chan;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.57-64
    • /
    • 2007
  • This study was conducted to characterize on the relationships among rainfall intensity, slope angle and pore water pressure in the gneissic weathered soil by landslide laboratory flume tests. Under the several test conditions dependent on rainfall intensity and slope angle, the authors measured pore water pressure, failure and displacement of slope on a regular time interval. According to the test results, the increasing times of pore water pressures have direct proportional trends to the rainfall intensity. The pore water pressure was increased earlier at the head part of slope than the toe part. Compared with the test results of Chae et al(2006), the results of this study explain that the seepage velocity in the gneissic weathered soil is slower than that in the standard sands. It results in faster and ear-lier increase of pore water pressure at the head part of slope due to slow flow of water in the gneissic weathered soil. In case of the relationship between slope angle and pore water pressure, gentle slope angle has faster increase of pore water pressure than steeper slope angle. It is also thought to be due to slow seepage velocity and flow velocity in the gneissic weathered soil.

An Experimental Study on Frost Heaving Pressure Characteristics of Frozen Soils (동결토의 동상팽창압 특성에 관한 실험적 연구)

  • 신은철;박정준
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.65-74
    • /
    • 2003
  • Most of land reclamation projects are being implemented along the south and west coastal lines of the Korean Peninsula. The earth structures and in-ground LNG tank, and buildings can be constructed using artificial freezing method on the reclaimed land to control the uplift pressure caused by capillary forces. In this study, upon freezing a saturated soil in a closed-system from the top, a considerable frost heaving pressure was developed. Decomposed granite soils, silty soil, and sandy soil were used in the laboratory freeze test which is sometimes subjected to thermal gradients under closed-systems. A major concern has been the ability to predict the frost heaving pressure over the results of relatively short-term laboratory tests. The frost heaving pressure arising within the soil samples and the temperature of the samples inside were monitored with time elapse. The degree of saturation versus heaving pressure curve is presented for each soil sample and the maximum pressure is closely related to this curve. TDR apparatus was used to measure the volumetric water content by the measurement of unfrozen water contents of frozen soils. Unfrozen water increased in soils containing a high percentage of fine-grained particles. In fine-grained soils with strong attractive farces between soil grains and water molecules, additional water is attracted into the pores leading to further volume changes and ice segregation.

Tension Crack and Lateral Pressure on Gravity Wall Backfilled by Cohesive Soil : Undrained Analysis (점성토로 뒤채움된 중력식옹벽에서의 인장균열 및 수평토압 : 비배수 해석)

  • 정성교;김형수
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.135-148
    • /
    • 1997
  • Coulomb's theory has been usually used in practice to obtain lateral earth pressure against retaining wall. Such theory is based in the assumption that the lateral pressure is a tai angular distribution, since the point of applying the lateral thrust cannot be obtained by using it. However, the results of laboratory and field tests showed that the lateral pressure was not a triangular but a nonlinear distribution. To overcome the drawback of the Coulomb's theory, the different theoretical approaches(Handy, 1985. Kingsley, 1989 : Kellogg, 1993, Chung et at,1993, 1996a) were performed for gravity wall backfilled by cohesionless soil. On the other hand, for retaining wall backfilled by ,cohesive soil, theoretical analyses were carried out only on the basis of the Rankine's or Coulomb's concepts, but the equations showed different results. Here was newly derived the equations of lateral pressures under undrained condition against gravity wall backfilled by cohesive soil. They were based on the Coulomb's wedge, adopted the arching concept. Some of the equations were derived by neglecting tension crack, while the others by considering it. Comparative results for applying different examples showed that the equation considering tension crack might be reasonable.

  • PDF