• 제목/요약/키워드: soil pressure

검색결과 1,633건 처리시간 0.03초

충격하중시험을 이용한 액상화 후 과잉간극수압 소산속도의 상사비 연구 (Evaluation of Similitude Laws for Dissipation Velocity of Excess Pore Pressure after Liquefaction using Impulse Load Tests)

  • 김동휘;하익수;황재익;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.714-721
    • /
    • 2004
  • The purpose of this study is to find out the similitude laws for dissipation velocity of excess pore pressure after liquefaction according to magnitude of input accelerations and height of model soils from the results of impulse load tests. In impulse load tests, model soils were constructed to the height of 25cm, 50cm, and 100cm in acrylic tubes whose inside diameters were 19cm and 38cm respectively, and impulse loads were applied at the bottom of each model soil to liquefy the entire model soil. Excess pore pressure distribution by depth and settlement of soil surface were measured in each test. Dissipation curves of excess pore pressure measured in each tests were simulated by solidification theory, and dissipation velocities of excess pore pressure were determined from the slope of simulated dissipation curves. From the results of impulse load tests, dissipation velocity of excess pore pressure was not affected by magnitude of input acceleration, and from this fact, dissipation process was proved to be different from dynamic phenomenon. However, dissipation velocity of excess pore pressure increased as height of model soil increased and showed little difference as diameter of model soil increased. Therefore, the similitude law for dissipation velocity could be expressed by the similitude law for model height to 0.2 without regard to the diameter of model soil.

  • PDF

불포화 사질토의 전단특성 (The Shear Characteristics of Unsaturated Sandy Soils)

  • 임성윤
    • 한국지반공학회논문집
    • /
    • 제23권10호
    • /
    • pp.57-64
    • /
    • 2007
  • 현재 불포화토에 대한 많은 연구가 진행되어 왔고 최근 들어 많은 연구자들이 불포화지반의 안정성을 보다 합리적으로 판단하고 해석하기 위해 불포화상태를 고려한 연구의 필요성을 제기하여 왔다. 이를 위해서는 흡인력에 대한 전단강도의 증진효과를 정량화하고 이를 안정해석에 적용하는 것이 요구되고 있는 실정이다. 따라서 본 연구에서는 불포화 사질토의 전단강도 특성을 규명하기 일해서 국내에 널리 분포하는 화강풍화토 7가지를 대상으로 불포화 삼축압축시험을 수행하였으며, 결과치를 분석하여 강도특성을 규명하고자 한다.

다양한 경계조건에서의 불포화 실트의 삼축압축 거동 (Triaxial Compressive Behaviour of Unsaturated Silt under Different Drainage Conditions)

  • 김영석;오카 후사오
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.998-1003
    • /
    • 2008
  • It has been recognized unsaturated soil behaviour playing an important role in geomechanics. Up to now, only a few experimental data are available for the technical difficulties related to both volume changes and suction measurements. In this study, the volume changes of unsaturated compacted silty soil were monitored with proximeter (i.e. non-contactable transducer) during various triaxial compression tests, which gave a realistic estimation in the volume changes of unsaturated soil sample. Various triaxial compression tests for unsaturated soil under different drainage conditions are carried out. The behaviour of the pore pressure, namely, the pore-air pressure and the pore-water pressure, and matric suction during the shearing tests are investigated. The experimental results have revealed that the mechanical behaviour of unsaturated soil can be significantly affected by the matric suction.

  • PDF

측방변형지반속 매설관 주변지반의 파괴모드 (Soil Failure Mode of a Buried Pipe Around in Soil Undergoing Lateral Movement)

  • 홍원표;한중근
    • 한국환경복원기술학회지
    • /
    • 제5권5호
    • /
    • pp.11-21
    • /
    • 2002
  • A series of model tests is performed to evaluate the relationship between soil and a buried pipe in soil undergoing lateral movement. As the result of the model tests, a wedge zone and plastic flow zones could be observed in front of the pipe. And also an arc failure of cylindrical cavity could be observed at both upper and lower zones. Failure shapes in both cohesionless and cohesive soils are nearly same, which was investigated failure angle of $45^{\circ}+{\phi}/2$. In the cohesionless soil, the higher relative density produces the larger arc of cylindrical cavity. On the basis of failure mode observed from model tests, the lateral earth pressure acting on a buried pipe in soil undergoing lateral movement could be applying the cylindrical cavity extension mode. The deformation behavior of soils was typically appeared in three divisions, which are elastic zones, plastic zones and pressure behavior zones.

불포화 토양에서 공기의 배출/제한이 침투속도에 미치는 영향 (Effects of Air Drain and Confined Conditions to Infiltration Rate in Unsaturated Soils)

  • 김상래;기재홍;김영진;한무영
    • 상하수도학회지
    • /
    • 제22권6호
    • /
    • pp.681-687
    • /
    • 2008
  • It is well known that the water infiltration rate depends on soil properties such as soil water content, water head, capillary suction, density, hydraulic conductivity, and porosity. However, most of proposed infiltration models assume that the air phase is continuous and in equilibrium with the atmosphere or air compression and air entrapment on infiltration was not considered. This study presents experimental results on unsaturated water infiltration to relate air entrapment and hydraulic conductivity function based on soil air properties. The objectives of this study were to measure change of soil air pressure ahead of wetting front under air drain and air confined condition to find the confined air effect on infiltration rate, to reduce the entrapped air volume related with soil air pressure to increase the soil permeability, and to make a basis of infiltration process model for the purpose of improvement of infiltration rate in the homogeneous soil column. The results of the work show that soil air pressure increases according to increasement of the saturated soil depth rather than the wetting front depth during infiltration process.

Alkali-activated GGBS and enzyme on the swelling properties of sulfate bearing soil

  • Thomas, Ansu;Tripathia, R.K.;Yadu, L.K.
    • Geomechanics and Engineering
    • /
    • 제19권1호
    • /
    • pp.21-28
    • /
    • 2019
  • Use of cement in stabilizing the sulfate-bearing clay soils forms ettringite/ thaumasite in the presence of moisture leads to excessive swelling and causes damages to structures built on them. The development and use of non-traditional stabilisers such as alkali activated ground granulated blast-furnace slag (AGGBS) and enzyme for soil stabilisation is recommended because of its lower cost and the non detrimental effects on the environment. The objective of the study is to investigate the effectiveness of AGGBS and enzyme on improving the volume change properties of sulfate bearing soil as compared to ordinary Portland cement (OPC). The soil for present study has been collected from Tilda, Chhattisgarh, India and 5000 ppm of sodium sulfate has been added. Various dosages of the selected stabilizers have been used and the effect on plasticity index, differential swell index and swelling pressure has been evaluated. XRD, SEM and EDX were also done on the untreated and treated soil for identifying the mineralogical and microstructural changes. The tests results show that the AGGBS and enzyme treated soil reduces swelling and plasticity characteristics whereas OPC treated soil shows an increase in swelling behaviour. It is observed that the swell pressure of the OPC-treated sulfate bearing soil became 1.5 times higher than that of the OPC treated non-sulfate soil.

A field investigation on an expansive soil slope supported by a sheet-pile retaining structure

  • Zhen Zhang;Yu-Liang Lin;Hong-Ri Zhang;Bin He;Guo-Lin Yang;Yong-Fu Xu
    • Structural Engineering and Mechanics
    • /
    • 제91권3호
    • /
    • pp.315-324
    • /
    • 2024
  • An expansive soil in 4970 special railway line in Dangyang City, China, has encountered a series of landslides due to the expansion characteristics of expansive soil over the past 50 years. Thereafter, a sheet-pile retaining structure was adopted to fortify the expansive soil slope after a comprehensive discussion. In order to evaluate the efficacy of engineering measure of sheet-pile retaining structure, the field test was carried out to investigate the lateral pressure and pile bending moment subjected to construction and service conditions, and the local daily rainfall was also recorded. It took more than 500 days to carry out the field investigation, and the general change laws of lateral pressure and pile bending moment versus local daily rainfall were obtained. The results show that the effect of rainfall on the moisture content of backfill behind the wall decreases with depth. The performance of sheet-pile retaining structure is sensitive to the intensity of rainfall. The arching effect is reduced significantly by employing a series of sheet behind piles. The lateral pressure behind the sheet exhibits a single-peak distribution. The turning point of the horizontal swelling pressure distribution is correlated with the self-weight pressure distribution of soil and the variation of soil moisture content. The measured pile bending moment is approximately 44% of the ultimate pile capacity, which indicates that the sheet-pile retaining structure is in a stable service condition with enough safety reserve.

인공강우에 의한 모형토조사면의 붕괴메카니즘 결정 (I) (Determination of Failure Mechanism of Slope Calibration Chamber Tests Using Rainfall Simulation (I))

  • 정지수;정춘교;이종인;이승호
    • 한국지반공학회논문집
    • /
    • 제27권2호
    • /
    • pp.27-34
    • /
    • 2011
  • 본 연구에서는 강우 시 지반정수 변화에 따른 사면붕괴 모델결정에 관한 기초연구로서 강우재현장치를 활용한 모형실험을 실시하여 불포화 상태의 사면에 침투하는 강우에 대하여 지속강우특성과 투수특성을 고려하여 간극수압, 토압, 함수비의 변화에 따른 사면 거동에 대해 분석하였다. 연구결과 강우(50mm/h)가 지속적으로 발생됨에 따라 화강 풍화토의 간극수압은 상부에서 먼저 상승하기 시작하며, 이어서 중간부와 하부에서 간극수압이 상승하기 시작하였다. 표준사의 간극수압은 역으로 하부에서 상부로 간극수압이 상승하는 것을 확인할 수 있었으며 이 같은 원인은 표준사 와 화강풍화토의 투수계수의 차이로 판단된다. 실험결과 지반조건 별로 다른 차이가 있으나 약 60~75% 정도 포화될 경우와 누적강우량 120mm이상 지속 시 사면붕괴의 발생 위험성이 있는 것을 알 수 있었다.

흐름식 아임계수에 의한 경유오염토양의 정화 (Remediation of Diesel Contaminated Soil Using Flowing Subcritical Water)

  • 이광춘;정선국;정선용;조영태;박정훈
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권3호
    • /
    • pp.10-16
    • /
    • 2011
  • The experimental studies for remediation of diesel contaminated soils were performed using subcritical water in laboratory scale. Contaminated soils from industrial area and artificially contaminated soils were utilized for soil remediation. Experimental system was composed for subcritical water to flow upward through the soil packed column for extracting contaminants. 10 g of contaminated soil was packed into the column and water flow rate was 2 mL/min. To evaluate the effects of temperature, pressure and treatment time on the removal efficiency, temperature was changed from 100$^{\circ}C$ to 350$^{\circ}C$, pressure from 50 bar to 220 bar and treatment time at the predetermined temperature from 0 min to 120 min. The purification efficiency increased as temperature increased. However, the effect of pressure and treatment time was low. Temperature 250$^{\circ}C$, pressure 50 bar and treatment time 30 min were selected for optimal operating condition for this study.