• Title/Summary/Keyword: soil pressure

Search Result 1,626, Processing Time 0.034 seconds

Experimental Evaluation of Shear Strength of Surface Soil Beneath Greenhouse Varying Compaction Rate (비닐하우스 기초 토양의 다짐률 변화에 따른 전단강도 특성)

  • Lim, Seongyoonc;Heo, Giseok;Kwak, Dongyoup
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.17-26
    • /
    • 2021
  • Greenhouses have been damaged due to the uplift pressure from strong wind, for which rebar piles are often installed near the greenhouse to resist the pressure. For the effective design of rebar piles, it is necessary to access the shear strength of soil on which the greenhouse is constructed. This study experimentally evaluates the shear strength of the soil beneath the greenhouse. Four soil samples were collected from four agricultural sites, and prepared for testing with 75, 80, 85, and 90% compaction rates. One-dimensional unconfined compression test (UC), consolidated-undrained triaxial test (CU), and resonant column test (RC) were performed for the evaluation of shear strength and shear modulus. Generally, the higher shear strength and modulus were observed with the higher compaction rates. In particular, the UC shear strength increases with the increase of #200 sieve passing rate. Resulting from the CU test, the sample with the most of coarse soil had the highest friction angle, but the variation is small among samples. Resulting from the CU and RC tests, the ratio of maximum shear modulus with the major principle stress at failure was the higher at the finer soil. The ratio was two to three times greater than the ratio from the standard sand. This indicates that the shear strength is lower for the fine soil than the coarse soil at the same shear modulus. The results of this study will be a useful resource for the estimation of the pull-out strength of the rebar pile against the uplift pressure.

Pull-out Characteristics of Multi-Packer Pressurized Soil Nails (가압 그라우팅 쏘일네일링 공법의 인발거동 특성)

  • Cho, Jae-Yeon;Lee, Sung-June;Jeong, Sang-Seom;Ahn, Byeong-Heun
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.2
    • /
    • pp.15-22
    • /
    • 2010
  • A series of field pull-out tests were carried out to investigate the behaviour of multi-pressurized soil nails. Ten soil nails were constructed in weathered soil and then, subjected to pull-out loads. The test results showed that the ultimate pull-out resistances of soil nails constructed with high pressure were about 42~142% larger than those obtained from conventional soil nails. The deduced interface shear strength at the ground-grout interface was 71 kPa for conventional soil nails, while higher shear strength of 95~166 kPa was obtained for pressurized nails. The diameter of grouted borehole increased by about 12~27% compared to ordinary soil nails under low pressure. Also, the predicted value by the cavity expansion theory is in good agreement with the measured expanded radius of grout under injection pressure by field pull-out tests.

대기압의 변화에 따른 휘발성 오염물질의 토양에서 대기로의 거동

  • Choi Ji-Won;Smith James A.;Hwang Gyeong-Yeop
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.114-116
    • /
    • 2005
  • Natural attenuation has been actively studied and often selected as final clean-up process in remediation of contaminated ground-water and soil for the last decade. Accordingly, understanding of natural processes affecting the fate and transport of contaminants in the subsurface becomes important for a success of implementation of the natural remediation strategy, Contaminant advection and diffusion processes in the unsaturated zone are naturally related to environmental changes in the atmosphere. The atmospheric pressure changes affecting the transport of contaminants in the subsurface are investigated in this study. Moisture content, trichloroethylene (TCE) concentration, temperature, and pressure variations in the subsurface were measured for the July, August, November, and December 2001 at Picatinny Arsenal, New Jersey. These data were used for a one-phase flow and one-component transport model in simulating the soil-gas flow and accordingly the TCE transport in the subsurface in accordance with the atmosphere pressure variations at the surface. The soil-gas velocities during the sampling periods varied with a magnitude of $10^{-6}\;to\;10^{-7}\;m\;s^{-1}$ at land surface. The TCE advection fluxes at land surface were several orders of magnitude smaller than the TCE diffusion fluxes. A sensitivy analysis indicated that advection fluxes were more sensitive to changes in geo-environmental conditions compared to diffusion fluxes. Of all the parameters investigated in this study, moisture content has the most significant effect on TCE advection and diffusion fluxes.

  • PDF

Effect of soil overburden pressure on mechanical properties of carbon FRP strips

  • Toufigh, Vahid;Bilondi, Meysam Pourabbas;Tohidi, Farshid
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.637-643
    • /
    • 2017
  • Carbon fiber reinforced polymers (CFRPs) have been recently investigated as an alternative material for Geosynthetics to improve soil properties. One of the factors influencing the fiber orientation and mechanical properties of CFRP is the effect of soil overburden pressure. This study investigates the tensile behavior of cast-in-place CFRP. During the curing time of specimens, a wide range of normal stress is applied on specimens sandwiched between the soils. Two different soil types are used to determine the effect of soil grain size on the mechanical properties of CFRP. Specimens are also prepared with different specifications such as curing time and mixing soil in to the epoxy. In this study, tensile tests are conducted to investigate the effect of such parameters on tensile behavior of CFRP. The experimental results indicate that by increasing the normal stress and soil grain size, the ultimate tensile strength and the corresponding strain of CFRP decrease; however, reduction in elastic modulus is not noticeable. It should be noted that, increasing the curing period of epoxy resin and mixing soil in to the epoxy have no significant effect on the tensile properties of CFRP.

Characteristics of Pore Pressure and Volume Change During Undrained lending of Unsaturated Compacted Granite Soil (비배수전단시 불포화 다짐화강토의 간극압과 체적변형특성)

  • 김찬기;김태형;이종천
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.15-21
    • /
    • 2003
  • A series of triaxial compression tests were performed on samples of compacted granite soil in a modified triaxial cell that allowed separate control of pore air pressure ($U_a$) and pore water pressure ($U_w$) in order to examine the characteristics of pore pressure, volume change and stress-strain behavior during undrained loading conditions. Triaxial samples of unsaturated and saturated compacted granite soil, 50mm in diameter and 100mm in height, were prepared by compaction in a mould. These samples were tested at 3 different suction values (0.5, 1.0, 2.0 kgf/cm$^2$) for unsaturated compacted granite soil and at 3 different confining stresses (1.0, 2.0, 4.0 kgf/cm$^2$). Results showed that only effective cohesion increased with little variation of friction angle, according to matric suction.

An Analytical Solution of Progressive Wave-Induced Residual Pore-Water Pressure in Seabed (진행파동장하 해저지반내 잔류간극수압의 해석해)

  • Lee, Kwang-Ho;Kim, Dong-Wook;Kim, Do-Sam;Kim, Tae-Hyung;Kim, Kyu-Han;Ryu, Heung Won
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.3
    • /
    • pp.159-167
    • /
    • 2015
  • In this paper, the errors found in the existed analytical solutions described the mechanism of residual pore-water pressure accumulation were examined and a new analytical was proposed. The new analytical solution was derived by using a Fourier series expansion and separation of variables was verified by comparison with the existed both analytical and numerical solutions and experimental result. The new analytical solution is very simple that there is no need for numerical integration for deep soil thickness. In addition, the solutions of the residual pore-water pressure for finite, deep, and shallow soil thickness reveled that it is possible to approach from finite to shallow soil thickness, but not possible to deep soil thickness because there was discontinues zone between finite and deep soil thickness.

Effects of Overburden Stress on Stability in Unsaturated Weathered Soil Slopes (불포화 풍화계열 사면의 안정성에 미치는 상재응력의 영향)

  • Park, Seong-Wan;Park, Jai-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.55-65
    • /
    • 2009
  • It has been well known that the infiltration of rainfall causes major surfacial slope failures in Korea. However, the hydrological and mechanical behaviors in unsaturated slopes are somewhat complex. When an analysis on unsaturated slope problems is performed, soil-water characteristics curves (SWCC) are considered as major parameters to apply. Since the weathered soil slopes are layered and stressed by overburden pressures, the response of SWCCs should account for its overburden pressure. To deal with this situation, in this study, laboratory testings were conducted to evaluate the SWCC under various overburden stress. In addition, the unsaturated shear strength was estimated using SWCC. Then the performance of unsaturated weathered soil slopes was evaluated under various conditions after applying the effect of overburden pressure on SWCCs. The results demonstrated that the effect of overburden pressure on SWCC could be substantial and the proper application to analysis is very important to enhance the prediction of slope stability.

Porewater Pressure Buildup Mode Induced in Near-field of Open-ended Pipe Pile during Earthquake and Sequake (지진과 해진시 개단강관말뚝 주변에 유발된 간극수압의 발생 양상)

  • 최용규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.23-30
    • /
    • 1998
  • During an earthquake, there are three components of excitation : horizontal excitation of the ground, vertical excitation of the pile due to superstructure feedback produced by vertical excitation of the ground, and the seawater excitation by the vertical ground shaking, that is, "the seaquake." These excitations could have effects on the pore pressure buildup mode induced in the near-field of open-ended pile and the soil plugs in open-ended pipe piles installed at offshore sites. While the ground and pile excitation could be modeled by exciting the soil and pile with simulated motions, seaquake excitation induced by the vertical ground shaking can be modeled by pulsing the water pressure at the seabed. The objectives of this study were to observe buildup trend for the porewater pressures developed in near-field of open-ended pipe pile installed in the calibration chamber during the simulated earthquake and seaquake and, also to confirm the cause for reduction of soil plugging according to pore pressure buildup. During the simulated horizontal seismic motion, there was no upward flow through soil plug because the similar magnitude of excess porewater pressure were occurred at the top and under the toe of soil plug. During the horizontal seismic motion, relatively higher hydraulic gradients caused upward flow in the soil plug and then the degradation of plugging resistance was about 20%. During seaquake, in the case of the open-ended pile installed in a deep sea with more than 220m of water depth, soil plug failed completely because of high upward hydraulic gradients through soil plug.soil plug.

  • PDF

A Study on Consolidation Characteristics at Sand Pile Adjacent Ground by Cavity Expansion Theory (공동확장이론에 의한 Sand Pile 주변지반에서의 압밀특성에 관한 연구)

  • 천병식;여유현
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.231-238
    • /
    • 2000
  • Sand piling method is one of the most widely used methods to improve soft soils. There are several methods to install sand piles, but driven pile method is considered as one of the easiest method. This method simply pushes down the sand piles into soft soils, so that the excess pore pressure would be generated if the soil is saturated. This pore pressure acts as consolidation load. If the amount of sand pile induced pore pressure can be predicted in reasonable ways, the effects of sand piling to improve soft soils would be predicted, and the height of preload can be reduced. In this article, sand pile induced excess pressure was predicted by cavity expansion theory, and the predicted values were compared with the field measured values. The results showed fair agreements between the measured and the predicted excess pore pressure.

  • PDF

Modification of Terzaghi's Earth Pressure Formula on Tunnel Considering Dilatancy of Soil (지반의 팽창성을 고려한 터널의 테르자기 토압공식 수정)

  • Han, Heui-Soo;Cho, Jae-Ho;Yang, Nam-Yong;Shin, Baek-Chul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.23-30
    • /
    • 2011
  • In this study, Terzaghi's formula was modified to solve problems considering the dilatancy effect of the soil for estimating the earth pressure acting on tunnel. It is performed for the comparison with Terzaghi's formula and modified Terzaghi's formula, tunnel model test result of Kobe University Rock Mechanics Laboratory. From comparison results of the earth pressure acting on tunnel, the earth pressure calculated by the Terzaghi's formula was estimated largest value. The earth pressure measured through the tunnel model test was least value. The difference between the earth pressure derived from Terzaghi's original formula and that derived from the modified formula was caused by the dilation effect, which was caused by the soil volume change. The difference between the earth pressure derived from the modified formula and the earth pressure measured through the tunnel model test, earth pressure results from the energy making failure surface. The results of FEM analysis were almost consistent with the results of mathematical analysis.