• Title/Summary/Keyword: soil pressure

검색결과 1,626건 처리시간 0.031초

국내 지반조건을 고려한 흙막이 백제에 작용하는 토압 (The Lateral Earth Pressure on Braced Cut Walls Considering Subsoil Condition in Korea)

  • 채영수;문일
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.129-138
    • /
    • 1994
  • It is well recognized that accurate analysis of lateral earth pressure is very signficant factor which determines the design amount of braced cut walls and braced systems. Many researchers, Peck, Terzaghi-Peck and so on, make a study about lateral earth pressure to act on the flexible walls. But these studies trouble accurate to multy layered systems like inland areas in Korea. This study is compared with the field messurement data to estimate the earth pressure distributions in multy layered areas and the empirical earth pressure distributions. The conclusions are as follows : At final excavation depth, the lateral earth pressure which messured by field instrument is smaller than the empirical earth pressure. (About 1.85~5.32 times). In the case of considering the soft rock layer to the final excavation depth, the messured earth pressure is safe to be compared with empirical earth pressure. The messured earth pressure distributions are like that the upper soil layer is small the middle soil layer is large, the rock mass layer is very small.

  • PDF

Numerical analysis of vertical drains accelerated consolidation considering combined soil disturbance and visco-plastic behaviour

  • Azari, Babak;Fatahi, Behzad;Khabbaz, Hadi
    • Geomechanics and Engineering
    • /
    • 제8권2호
    • /
    • pp.187-220
    • /
    • 2015
  • Soil disturbance induced by installation of mandrel driven vertical drains decreases the in situ horizontal hydraulic conductivity of the soil in the vicinity of the drains, decelerating the consolidation rate. According to available literature, several different profiles for the hydraulic conductivity variation with the radial distance from the vertical drain, influencing the excess pore water pressure dissipation rate, have been identified. In addition, it is well known that the visco-plastic properties of the soil also influence the excess pore water pressure dissipation rate and consequently the settlement rate. In this study, a numerical solution adopting an elastic visco-plastic model with nonlinear creep function incorporated in the consolidation equations has been developed to investigate the effects of disturbed zone properties on the time dependent behaviour of soft soil deposits improved with vertical drains and preloading. The employed elastic visco-plastic model is based on the framework of the modified Cam-Clay model capturing soil creep during excess pore water pressure dissipation. Besides, nonlinear variations of creep coefficient with stress and time and permeability variations during the consolidation process are considered. The predicted results have been compared with V$\ddot{a}$sby test fill measurements. According to the results, different variations of the hydraulic conductivity profile in the disturbed zone result in varying excess pore water pressure dissipation rate and consequently varying the effective vertical stresses in the soil profile. Thus, the creep coefficient and the creep strain limit are notably influenced resulting in significant changes in the predicted settlement rate.

고압공기분사를 이용한 유류오염토양 세척기법의 적용성 연구 (Applicability of Washing Techniques Coupled with High-Pressure Air Jet for Petroleum-contaminated Soils)

  • 최상일;김강홍
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제11권6호
    • /
    • pp.61-68
    • /
    • 2006
  • 유류오염토양에 대한 고압공기분사를 이용한 세척기법의 적용성 연구를 위하여 저유소 주변의 실제 디젤오염토양을 사용하였으며 초기 오염농도는 $2,828{\pm}206\;mg/kg$으로 토양환경보전법상 가지역 우려기준 농도를 5배 이상 초과하였다. 세척공정의 기본 운전인자들에 대한 조건별 효율성 평가 및 최적조건 도출실험을 수행한 결과 효율적인 세척을 위하여 impeller는 편심 및 기울어진 중심에 위치하는 것이 가장 유리하였으며 교반속도는 높은 전단력(shear force)이 발생하는 고속교반조건(300 rpm)에서 세척효율이 가장 우수하였다. 교반시간은 10분이 효율성 및 경제성이 우수한 조건으로 판단되었으며 1차 반응속도식에서 도출된 교반속도별 속도상수들간 증가율 감소를 확인하여, 저속 교반조건(30, 60 rpm)에서도 추가적인 물리적 탈착력이 더해진다면 고속교반조건에서와 같은 제거효율을 얻을 수 있음을 알 수 있었다. 고압공기 분사에 따른 세척효율은 소수성(hydrophobic)의 토양표면 유류물질이 수중의 공기방울 표면에 강하게 부착(attracting)되어 제거됨을 확인하였고 공기압이 높아질수록 반응기내 공기유량이 증가되면서 오염물질의 부착율이 향상되었다. Impeller에 의한 교반과 고압공기 분사 혼합공정에서는 60 rpm, $2\;kg/cm^2$ 조건이 가장 효율적으로 판단되었다. 따라서 고압공기분사를 통한 토양세척기법은 유류오염토양 정화에 효율적 적용이 가능할 것으로 사료된다.

지오컴포지트를 이용한 양압력 제거공법 (Uplift Pressure Removal System in Underground Structure by Utilizing Geocomposite System)

  • 신은철;김종인;박정준
    • 한국지반공학회논문집
    • /
    • 제22권9호
    • /
    • pp.61-68
    • /
    • 2006
  • 최근 대규모 토목 건설 프로젝트는 용지 매입비용 및 각종 민원으로 인하여, 공유수면을 매립하거나 해안 및 하천지역의 용지를 활용하고 있다. 공유수면을 매립한 지반이나 해안 및 하천 지역의 지반은 충분한 지지력을 발휘하지 못하는 연약지반이 대부분이다. 이러한 연약지반은 주로 점토나 실트와 같은 미세한 입자의 흙이나 간극이 큰 유기질토 또는 이탄, 느슨한 모래 등으로 이루어진 토층으로 구성되어 있으며, 지하수위가 높기 때문에, 제체 및 구조물의 안정과 침하 문제를 발생시킬 수 있다. 본 연구에서는 지오컴포지트의 수리특성을 평가하기 위해 상재하중에 따른 통수성과 전수성 실내시험을 수행하였으며, 지하수위가 높은 지반에 지하구조물을 축조할 경우 발생될 수 있는 지하수 누수 및 양압력을 제거하기 위하여 토목섬유를 적용한 배수시스템을 연구하였다. 지반의 조건상 양압력으로 인한 문제점이 많이 발생되는 매립지의 준설토를 이용하여 실내배수실험을 수행하였다. 실내 배수실험에서는 실험기 하부에 토목섬유 배수층을 설치한 후에 상부에 준설토를 다져 넣고 상부에서 단계별 수압을 가하여 배수량과 간극수압을 측정하여 각각의 수압에 따른 계측값들과 이론적인 값들과 비교하였다. 실내배수실험의 타당성을 분석하기 위하여 흙이나 암석과 같은 다공질 재료의 간극수압 분포나 이동을 해석하기 위한 2차원 유한요소 해석프로그램을 이용하여 수치해석을 수행하여 실내실험의 결과와 비교하였다.

Characteristics of expansive soils improved with cement and fly ash in Northern Thailand

  • Voottipruex, Panich;Jamsawang, Pitthaya
    • Geomechanics and Engineering
    • /
    • 제6권5호
    • /
    • pp.437-453
    • /
    • 2014
  • This paper studies the swelling and strength characteristics of unimproved and improved expansive soils in terms of the swell potential, swelling pressure, rate of secondary swelling, unconfined compressive strength and California bearing ratio (CBR). The admixtures used in this study are locally available cement and fly ash. The soils used in this study were taken from the Mae Moh power plant, Lampang Province, in northern Thailand. A conventional consolidation test apparatus was used to determine the swelling of the soil specimen. The optimum admixture contents are determined to efficiently reduce the swelling of unimproved soil. The rate of secondary swelling for unimproved soil is within the range of highly plastic montmorillonite clay, whereas the specimens improved with optimum admixture contents can be classified as non-swelling kaolinite. A soil type affects the swelling pressure. Expansive soil improvement with fly ash alone can reduce swelling percentage but cannot enhance the unconfined compressive strength and CBR. The strength and swelling characteristics can be predicted well by the swelling percentage in this study.

풍화화강토 사면에서 강우로 인한 모관흡수력 변화에 대한 실험 연구 (In-situ Monitoring of Matric Suctions in a Weathered Granite Soil Slope)

  • 이인모;조우성;김영욱;성상규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.509-516
    • /
    • 2002
  • Rainfall-induced landslides in a weathered granite soil slope have mostly relative shallow slip surfaces above the groundwater table The pore-water pressure of soil above the groundwater table is usually negative. This negative pore-water pressure(or matric suction) has been found to make a large contribution to the slope stability. Therefore, the variation of in-situ matric suction profiles with time in a soil slope should be understood. In this study, a field measurement program was carried out from June to August, 2001 to monitor in-situ matric suctions and volumetric water contents in a weathered granite soil slope. The influence of climatic conditions on the variation of in-situ matric suctions could be found to decrease rapidly with depth. It could be found that decrement of matric suction induced by precipitation is affected not only by the amount and duration of rainfalls but also by the initial matric suction just prior to rainstorms. The soil-water characteristic from the field monitoring tends toward the wetting path of SWCC obtained from the laboratory test.

  • PDF

Analysis of cavity expansion and contraction in unsaturated residual soils

  • Lukosea, Alpha;Thiyyakkandi, Sudheesh
    • Geomechanics and Engineering
    • /
    • 제28권4호
    • /
    • pp.405-419
    • /
    • 2022
  • Cavity expansion and contraction solutions for cylindrical and spherical cavities in unsaturated residual soils are presented in this paper. Varying soil state in the plastic zone is accounted by a numerical approach, wherein an element-by-element discretization of the plastic zone of both expanding and contracting cavities is carried out. Unlike existing methods utilizing self-similarity technique, the solution procedure enables the prediction of entire soil-state at any stage of expansion and subsequent contraction. It is also applicable for both cavity creation and expansion problems. The approach adopts constant contribution of suction to effective stress (constant Xs drainage condition) for analysis. The analysis procedure is validated by interpreting the previously reported pressuremeter test results in lateritic residual soil. The typical cavity expansion and contraction characteristics of unsaturated Indian lateritic soil were then examined using this solution procedure. The effect of initial soil-state on cavity limit pressure, plastic radius, reverse yield pressure, and reverse plastic radius are also presented.

압밀특성에 관한 연구 (I) (선행하중이 압밀특성에 주는 영향) (A Study on the Characteristics of Consolidation of Soils (I) (The Influence of Pre-consolidation Load of Soils on Consolidation Characteristics))

  • 류능환;강예묵
    • 한국농공학회지
    • /
    • 제18권4호
    • /
    • pp.4242-4250
    • /
    • 1976
  • The determination of the pre-consolidation load known to have a great effect on the consolidation characteristics of the soil have been researched and discussed in detail by many other researchers. A study was undertaken to investigate and compare the effect of pre-consolidation loads on the coefficient of permeability and the consolidation characterisics of soil through the consolidation test on the three types of soil samples. The results of this study are follows; 1. Large compression index is dependent on initial void ratio of the sample being used and the pressure-void ratio curve shows a curved linear relationship in over-consolidated area but a linear relationship in normally consolidated area.2. Settlement-time curve is S-shaped where the pressure is larger than pre-consolidation load and regardless of over-burden pressure, it is a similar straight line respectively in the secondary consolidation area. 3. Primary consolidation ratio of the sample increases almost linearly with the increase of over-burden pressure but the coefficient of volume compressibility decreases linearly with the increase of it. 4. Time factor of a certain degree of consolidation increases with over-burden pressure but the coefficient of consolidation decreases with it in over-consolidated area. There is a linear relationship between them in normally consolidated area. 5. The void ratio of completion point of primary consolidation decreases linearly with over-burden pressure. 6. The coefficient of permeability of sample decreases linearly with over-burden pressure in normally consolidated area, also it increases linearly with increment of the void ratio of the sample.

  • PDF

타이어 공기압이 언더트레이드면의 3방향 접지압에 미치는 영향 (Tire Inflation Pressures Effects on 3 Directional Contact Pressures Between Soil and Undertread for a Tractor Tire)

  • 전형규;이규승
    • Journal of Biosystems Engineering
    • /
    • 제26권2호
    • /
    • pp.123-130
    • /
    • 2001
  • The research described in this paper was aimed toward improving the understanding of the interaction of tire inflation pressure and the soil-tire interface stresses. A three-directional stress transducer was developed to measure stress distribution on undertread for a tractor tire. The transducer can directly measure three-directional stresses (normal stress, tangental stress and lateral stress and lateral stress) simultaneously and has both strong structure and high sensitivity, which is not changed by the abrasion of the detecting plate. Measurements of soil-undertread interface stresses were made at tire center on undertread on a 12.4-R24 radial tractor tire opeated at three combinations of a dynamic load (11.8kN) and three inflation pressures (59kPa, 108kPa and 157kPa). These measurements showed that as inflation pressure increased, the soil-undertread interface stresses increased. The results of three stresses comparisons were shown that the peak normal stresses were considerably higher than the tangential peak stresses and the peak lateral stresses.

  • PDF

Hydraulic Property and Solute Breakthrough from Salt Accumulated Soils under Various Head Pressures

  • Lee, Sanghun;Chung, Doug-Young;Hwang, Seon-Woong;Lee, Kyeong-Bo;Yang, Chang-Hyu;Kim, Hong-Kyu
    • 한국토양비료학회지
    • /
    • 제45권5호
    • /
    • pp.717-724
    • /
    • 2012
  • Salt accumulated soil should be reclaimed to lower salt level for crop production. This study was carried out to investigate the characteristics of water flow and transport of mono and divalent solutes on salt accumulated soils with different head pressures. Saturated hydraulic conductivity was measured by constant and falling head methods with maintaining different head pressures. Saturated hydraulic conductivity was influenced by bulk density and organic matter contents in soils, but it had different elusion patterns between saline and sodic soil. While the quantity of water necessary for reclamation could be varies with soil type, it was considered that the supply of one pore volume of water was affordable and economic. Additional head pressure significantly increased the volume of leachate at a given time and it was more effective at low organic matter soils. The results indicate that additional head pressure would be one of the best irrigation practices on desalination method for salt accumulated soils.