• Title/Summary/Keyword: soil pH and EC

Search Result 472, Processing Time 0.035 seconds

Comparison of Soil Chemical Properties in Greenhouse or Open Field Where Flower Crops were Cultivated from 2018 to 2020 (화훼작물이 재배된 온실 또는 노지재배지의 토양 화학성 비교)

  • Kwon, Hye Sook;Heo, Seong
    • Korean Journal of Plant Resources
    • /
    • v.35 no.5
    • /
    • pp.675-685
    • /
    • 2022
  • A comparative analysis was performed on the soil chemical properties of greenhouse or open field where flower crops were grown from 2018 to 2020. The pH of greenhouse soils was kept slightly higher than the optimum range suggested by Rural Development Administration and that of open field soils was maintained within the optimum range for three years. The contents of organic matter (OM) were within the optimum range without significant change every year in both soils. Available phosphate (Av. P2O5) of greenhouse soils was the highest at 560 mg/kg in 2018, but it decreased every year and fell within the appropriate range in 2020. The concentration of Av. P2O5 in open field soils have fluctuated for three years, not showing a significant difference. Electrical conductivity (EC) of greenhouse soils was higher every year than the standard, 2.0 dS/m, but EC of open field soils remained below the standard. The contents of exchangeable cations were higher than the standard, showing significant differences among the years in greenhouse soils. In open field soils, other cations except exchangeable K+ were maintained higher than the optimal level and only Ca2+ showed a significant difference among the years. In Pearson correlation matrices, the value of exchangeable Ca2+ had a significantly positive correlation with exchangeable Mg2+ content at both greenhouse and open field soils. Based on principal component analysis, the soils of greenhouse were distributed within the range of high concentrations of Av. P2O5, EC and exchangeable cations, while the soils of open field were characterized by low contents of OM and exchangeable cations. Therefore, it is essential to lower the concentration of exchangeable cations in greenhouse soils. It is common for the soils of open field to have a low OM content, so that organic fertilizers should be more actively applied to the soils in open field.

Water Quality Variations of pH, Electrical Conductivity and Dissolved Oxygen in Forest Hydrological Processes (산지(山地) 물순환과정(循環過程)에 있어서 산도(酸度), 전기전도도(電氣傳導度) 및 용존산소량(溶存酸素量)의 변화(變化))

  • Lee, Heon-Ho;Jun, Jae-Hong
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.4
    • /
    • pp.634-646
    • /
    • 1996
  • This study was carried out to reveal the forest land effect on water purification in mountainous watersheds. Rainfall, throughfall, stemflow, soil and stream water were monitored by pH, electrical conductivity(EC), and dissolved oxygen(DO) in Daehan-Ri and Parkdal-Ri catchments. The results were summarized as follows; 1. Rainfall pH values of Parkdal-Ri and Daehan-Ri were 7.6 and 6.4, respectively. 2. Comparing stemflow and throughfall of Pinus densiflora with Pinus rigida, the pH values of Pinus densiflora were 4.32 and 4.22 and the pH of Pinus rigida were 3.34 and 4.81, respectively. The EC values of Pinus densiflora were $119.7{\mu}S/cm$ and $96.8{\mu}S/cm$ and EC of Pinus rigida were $230.0{\mu}S/cm$ and $82.0{\mu}S/cm$. 3. All pH values were decreased as the streamflow increased except long-term runoff in Daehan-Ri. The EC values also were increased as the streamflow increased, but EC of short-term runoff in Daehan-Ri was gradually decreased as the streamflow increased due to entrance of throughfall which has high EC values at the beginning of rainfall events. The DO concentrations of all experimental plots were elevated as the streamflow increased, because reaeration occurs at the surface of the stream as the increased discharge make turbulence. 4. pH of Stemflow and throughfall in Pinus densiflora were lower than in Quercus acutissima, but EC values were higher in Pinus densiflora. 5. Water purification was mostly influenced by forest soil in forest hydrological processes. 6. Stemflow and throughfall were more influenced by dry deposition and organic acid in crown and bark than those of wet deposition. During the stemflow and throughfall passed forest soil, these acidic stemflow and throughfall were neutralized, and stream water quality was neutral or slightly alkaline.

  • PDF

Chages in pH, EC and Water Soluble Ions in the Rearing Beds of Eisenia andrei (Ennelida; Oligochaeta) in Relation to the Amount of Sludges Supplied to the Earthworm Populations (유기성슬러지 먹이공급에 따른 붉은줄지렁이 사육상의 pH, EC, 수용성 이온 농도변화)

  • Park, Kwang-Il;Bae, Yoon-Hwan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.79-89
    • /
    • 2017
  • Changes in pH, EC and water soluble cation and anion of the bed material in the rearing box of earthworms were investigated while sewage sludges or night soil sludge were cumulatively supplied to the 15 grams of initial earthworm population in the rearing box. Initial biochemical properties of sludges such as pH, EC, V.S. and water content were at the edible levels for earthworm. However, as the cumulative amount of sludges supplied to the earthworms were increased, pH of bed material in the rearing box was lowered and EC was increased, which meant that salt contents of bed material in the rearing box had been accumulated. Water soluble cations and anions were also accumulated in the bed material of the rearing box. Accumulation rates of ${NO_3}^-$ were especially prominent. Consequently, feeding rates of earthworm populations were reduced to nearly zero and earthworm populations finally died.

Factor Analysis of Soil and Water Quality Indicators in Different Agricultural Areas of the Han River Basins (한강수계 농업지대에서 토양과 수질 지표에 대한 요인 분석)

  • Jung, Yeong-Sang;Yang, Jae-E;Joo, Jin-Ho;Kim, Jeong-Je;Kim, Hyun-Jeong;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.398-404
    • /
    • 1999
  • Factor analysis technique was employed to screen the principal indicators influencing soil and water qualities in the intensively cultivated areas of the Han River Basin. Soil chemical parameters were analyzed for the soil samples collected at intensive farming area in Pyungchang-Gun, and water quality monitoring data were obtained from the agricultural small catchments of Han River Basin during 1996 and 1997. Among the $11{\times}11$ cross correlation matrix, 29 correlations were significant out of 55 soil quality indicator pairs. The overall Kaiser's measure of sampling adequacy(KMS) value was acceptable with 0.60. Most indicators except iron were acceptable. Among soil indicators, the first factors showing high factor loadings were pH, Ca and Mg. The factor loading was the highest for Ca. The second factor could be characterized as phosphate and micronutrient. The third factor was organic matter and EC, and the fourth factor was potassium and Fe. Out of 190 water quality indicators, 86 correlations were significant. Overall KMS value was 0.74, but the KMS values for pH, TSS, Cd, Cu and Fe were lower than 50. The first factor of EC accounts 27.1 percents of the total variance, and showed high factor loadings with Na, Ca, $SO_4$, Mg, K, Cl, $NO_3$, and T-N. The second factor showed high loadings with Zn, Fe, Mn and Cd. The third to seventh factors could be characterized as $PO_4$, TSS, inorganic nitrogen, pH and T-P, and Cu factors, respectively. The factor score for EC was the highest in Kuri, followed by Chunchon, Dunnae and Daegwanryng. The factor score for heavy metals were the highest in the Daegwanryng. The results demonstrated that the factor analysis could be useful to select the most principal factor influencing soil and water qualities in the agricultural watershed.

  • PDF

Effects of the application of Sewage Sludge on the Growth of Chinese Cabbage(Brassica campestris L.) and Changes in Soil Chemical Properties. (불수 sludge 시용이 배추의 생육과 토양의 화학성 변화에 미치는 영향)

  • 김수영;조경철;정순주
    • Korean Journal of Organic Agriculture
    • /
    • v.9 no.1
    • /
    • pp.61-73
    • /
    • 2001
  • This study was conducted to investigate the effect of sewage sludge application on the growth of chinese cabbage and the changes of chemical properties of soil. The experiment were set up with two different place and cultivated from Feb. 10 to June. 20 of 2000. Treatments are 0, 1.25, 2.5, 5, 10 and 20kg/3.3$\m^2$ of sewage sludge applicated into the soil and recorded the growth characteristics. Chemical properties of soil were also analysed before and after treatment. The application of the sewage sludge resulted in increasing the content of EC, cations exchange capacity, available phosphate and organic matter. And increased the growth characteristics in terms of the number of leaves, leaf area, fresh and dry weight regardless of crops experiments. Optimum amount of the sewage sludge depended on chemical properties of soil used. This results demonstrated that application of sewage sludge in the soil attribute to have play an important both improving soil chemical properties and promoting the crop growth. As lowering the soil pH(pH 6) heavy metal content increased compared with higher pH(pH 7). Feasibility was recognized in the application of sewage sludge as a fertilizer for the growth of chinese cabbage. Detrimental effects such as heavy metal in the soil and crop followed by the application of sewage sludge was not observed.

  • PDF

Effect of pre-planting liming fertilization in peatmoss based substrates on plug seeding growth of 'Red Madness' petunia and changes in soil chemical properties (피트모스 혼합상토에 기비로 혼합된 석회질 비료가 'Red Madness' 페튜니아 플러그 묘 생장과 상토화학성에 미치는 영향)

  • Lee, Poong-Ok;Lee, Jong-Suk;Choi, Jong-Myung
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.17-23
    • /
    • 2011
  • This research was conducted to investigate the influence of application rate of liming fertilizers on changes in soil chemical properties and growth of 'Red Madness' petunia in plug production. To achieve this, dolomite (DO) with 0, 1.0, 3.5, 8.0 or 13.0 $g{\cdot}L^{-1}$ and calcium carbonate (CC) with 0, 2.0, 2.5, 3.0, 3.5, or 4.0 $g{\cdot}L^{-1}$ were incorporated into peatmoss + vermiculite (1:1, v/v) during the root substrates formulation. The treatments of 3.5 $g{\cdot}L^{-1}$ of DO and 2.5 or 3.0 $gL^{-1}$ of CC had acceptable ranges of pH and EC in soil solution such as 5.6~6.2 and 0.7~1.0 $dS{\cdot}m^{-1}$, respectively. The faster rising of pH was observed in root media containing CC rather than those of DO. This indicates that the solubility of CC is higher than DO. The soil Ca concentrations in all treatments of CC were 1.8 times as high as those of DO. The treatments of 3.5 or 8.0 $g{\cdot}L^{-1}$ of DO had the highest soil Mg concentrations, but all treatments of CC had lower soil Mg concentrations than control treatment indicating that additional application of Mg fertilizers are required. The elevated application rate of DO or CC resulted in the increase of fresh and dry weight. But plant heights were not influenced by application of liming fertilizers. The results of tissue analysis showed that application of DO or CC influenced the $PO_4{^-}P$, Ca and Mg contents, but not influenced the contents of other nutrients such as N, P, Fe, Mn, Zn and Cu.

Characteristics of Soil Groups Basd on the Development of Root Rot of Ginseng Seedlings (인삼 유묘 뿌리썩음병 진전에 따른 토양군별 특성)

  • 박규진;정후섭
    • Korean Journal Plant Pathology
    • /
    • v.13 no.1
    • /
    • pp.46-56
    • /
    • 1997
  • Based on the principal component analysis (PCA) of Richards' parameter estimates, ginseng field soils were grouped as the principal component 1 (PC1) and the principal component 2 (PC2). The microflora and physico-chemical characteristics of each soil group were compared to elucidate soil environmental factors affecting the disease development of root rot of ginseng seedling. Among 3 soil groups by PC1, there were differences in the populations of total fungi (TF) and Cylindrocarpon plus Fusarium (C+F), and the population ratio of Cylindrocarpon plus Fusarium to total fungi or total bacteria (C+F/TF, C+F/TB) in rhizoplane of ginseng seedlings, the population of total actinomycetes (TA) and the population ratio of total Fusarium to total actinomycetes (Fus/TA) in soil, and soil chemical properties (EC, NO3-N, K, Mn, ect.). Among 4 soil groups by PC2, there were differences in TF, C+F, TB, C+F/TF and C+F/TB in the rhizoplane, Trichoderma plus Gliocladium (T+G) in soil, and P2O5 content in soil. Especially, EC, NO3-N, K, K/Mg and Mn were positively correlated to PC1, and TA was negatively to PC1; however, TF, C+F, TB, C+F/TF and C+F/TB in the rhizoplane were significantly correlated to PC2 positively. On the other hand, microbes in the rhizoplane were not significantly correlated to the stand-missing rate (SMR), although TA and Fe/Mn were negatively correlated, and pH and Ca were positively correlated to SMR.

  • PDF

Changes of Tomato Growth and Soil Chemical Properties as Affected by Soil pH and Nitrogen Fertilizers (토양 pH와 질소 관비 비종에 따른 토마토 생육 및 토양화학성 변화)

  • Kang, Yun-Im;Roh, Mi-Young;Kwon, Joon-Kook;Park, Kyoung-Sub;Cho, Myeong-Whan;Lee, Si-Young;Lee, In-Bok;Kang, Nam-Jun
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.4
    • /
    • pp.328-335
    • /
    • 2010
  • This study was conducted to determine effects of soil pH and form of nitrogen fertilizers on tomato growth and chemical properties of greenhouse soil using ferigation system. Tomato (Lycopersicon esculentum Mill. cv. Superdoterang) were grown for three months in 18 L pots filled with two soil (pH 6.8 and pH 8.7). 4 different nitrogen fertilizers (urea, ammonium nitrate, ammonium sulfate, and potassium nitrate) were fertigated with different concentrations of 0, 10, 50, and 100 mg N/L during tomato cultivation. Soil pH 8.7 decreased yield and chlorophyll fluorescence compared with soil pH 6.8. Yield at soil pH 8.7 increased by ammonium nitrate and ammonium sulfate fertigation. Soil pH 6.8 induced increment of yield by nitrogen concentration than form of nitrogen fertilizers. Soil pH after cultivation of tomato decreased by application of ammonium nitrate and ammonium sulfate. Soil EC by 100 mg N/L application of ammonium sulfate was twice as much as other fertilizers. Form of nitrogen fertilizer had less effect on concentration of soil $NH_4^+$-N and $NO_3^-$-N in soil but the concentrations slightly reduced at pH 8.7. These results indicate that application of urea and ammonium nitrate for a nitrogen source of fertigation has little affects on soil chemical properties before and after tomato cultivation.

Soil Physical and Chemical Characteristics of River-Bed Sediments in River Basins (하천 퇴적토양의 이화학적 특성)

  • Zhang, Yong-Seon;Sonn, Yeon-Gye;Park, Chan-Won;Hyun, Byung-Keun;Moon, Yong-Hee;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.963-969
    • /
    • 2011
  • The river-bed sediments from the major river basins were analysed for the chemical and physical properties to evaluate environmental safety for the agricultural uses. The samples were taken from 16 sites of Han river, 36 of Geumgang river, 27 of Yeongsan river, and 140 of Nakdong river. The total of 219 samples from the 28 counties were taken from the surface of the sediments at the depth of 50 cm. The particle density of the sediments was greater than $2.63Mg\;m^{-3}$ and the whole range of the density was $2.60{\sim}2.69Mg\;m^{-3}$, the average particle size was 0.7 mm whereas the size range was 0.075~0.85 mm. The analyses of the particle sizes by basins showed that Han and Geumgang river had particle sizes of 0.075~0.85 mm, while Geumgang and Yeongsan river had particle sizes of 0.25~0.85 mm. Geumgang and Yeongsan river tended to have greater particle sizes. The average values of the chemical properties were 6.3 for pH, $0.16dS\;m^{-1}$ for EC, $8g\;kg^{-1}$ for organic matter, $101mg\;kg^{-1}$ for available phosphate, 0.39, 3.47, and $0.93cmol_c\;kg^{-1}$ for exchangeable potassium, calcium, and magnesium respectively. The greatest property at each basin was pH for Han river, Ec, available phosphate and exchangeable sodium for Geumgang river, organic matter, exchangeable calcium and magnesium for Yeongsan river, and exchangeable potassium for Nakdong river.

Soil Profile Characteristics of Coif Courses Located in Southern Region (남부지역 골프장의 토양단면 특성)

  • 최병주;주영희;심재성
    • Asian Journal of Turfgrass Science
    • /
    • v.9 no.1
    • /
    • pp.75-80
    • /
    • 1995
  • In eight golf courses of southern area fair way soil profile was investigated for soil physical, chemical properties, and root distribution. These were carried out only A horizon(lScm depth) in one golf course. Soil series was all different, Leaching to lower horizon was greator in order of Mg=$NO_3$> $NH_4$=Ca> K. Organic matter content was higher in B horizon than A in three golf courses. Soil phosphorus appeared to more down greatly in two golf courses. Soil pH was higher in lower horizon of all places. Such pH increase with depth seemed to he related with mineral leaching, Among the horizons of all golf courses BC showed significant correlation with K (EC =0.1025K +0.0157, r=0. 8012 p=0. 001 n=20). Both Fe and Mn were higher in A horizon.

  • PDF