• Title/Summary/Keyword: soil nitrate

Search Result 600, Processing Time 0.026 seconds

Growth, Nitrogen Metabolism, and Nodulation of Hypernodulating Soybean Mutant Affected by Soil Fertility

  • Ha, Bo-Keun;Lee, Suk-Ha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.2
    • /
    • pp.145-149
    • /
    • 2001
  • This study was performed to evaluate the growth and nodulation characters of hypernodulating soy-bean mutant, SS2-2, and to know the growth and yield performance of the mutant in infertile soil. Soil fertility was adjusted by mixing the different ratios of soil components including clay, river sand, and horticultural bed, which resulted in fertile and infertile soil. Dry weight, nitrogen concentration, and leaf nitrate reductase of each plant were measured around V6 stage (47 days after planting) and around R3 stage (82 days after planting). There were significant effects of soil fertility and soybean genotype on the total dry weights including root, nodule, stem, leaf, and pod dry weight at V6 and R3 stages. Total dry weight of hypernodulating mutant, SS2-2, was clearly less than that of its wild type, Sinpaldalkong 2. However, nodule development on the roots of SS2-2 was much greater than that of Sinpaldalkong 2, regardless of soil fertility. Though SS2-2 was smaller in plant size than Sinpaldalkong 2, genotypic difference in total nitrogen content was not significant at both V6 and R3 stages because SS2-2 fixed more nitrogen biologically than its wild type in the root nodule. The SS2-2 mutant showed lower plant yield in both infertile and fertile soil. The SS2-2 contained more crude seed protein than Sinpaldalkong 2, and was characterized with reduced top and root growth.

  • PDF

Mg/Al Impregnated Biochar for the Removal and Recovery of Phosphates and Nitrate

  • Kim, Dong-Jin
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2019.10a
    • /
    • pp.134-134
    • /
    • 2019
  • Utilization of organic waste as a renewable energy source is promising for sustainability and mitigation of climate change. Pyrolysis converts organic waste to gas, oil, and biochar by incomplete biomass combustion. Biochar is widely used as a soil conditioner and adsorbent. Biochar adsorbs/desorbs metals and ions depending on the soil environment and condition to act as a nutrient buffer in soils. Biochar is also regarded as a carbon storage by fixation of organic carbon. Phosphorus (P) and nitrogen (N) are strictly controlled in many wastewater treatment plants because it causes eutrophication in water bodies. P and N is removed by biological and chemical methods in wastewater treatment plants and transferred to sludge for disposal. On the other hand, P is an irreplaceable essential element for all living organisms and its resource (phosphate rock) is estimated about 100 years of economical mining. Therefore, P and N recovery from waste and wastewater is a critical issue for sustainable human society. For the purpose, intensive researches have been carried out to remove and recover P and N from waste and wastewater. Previous studies have shown that biochars can adsorb and desorbed phosphates implying that biochars could be a complementary fertilizer. However, most of the conventional biochar have limited capacity to adsorb phosphates and nitrate. Recent studies have focused on biochar impregnated with metal salts to improve phosphates and nitrate adsorption by synthesizing biochars with novel structures and surface properties. Metal salts and metal oxides have been used for the surface modification of biochars. If P removal is the only concern, P adsorption kinetics and capacity are the only important factors. If both of P and N removal and the application of recovery are concerned, however, P and N desorption characteristics and bioavailability are also critical factors to be considered. Most of the researches on impregnated biochars have focused on P removal efficiency and kinetics. In this study, coffee waste is thermally treated to produce biochar and it was impregnated with Mg/Al to enhance phosphates and nitrate adsorption/desorption and P bioavailability to increase its value as a fertilizer. Kinetics of phosphates and nitrate adsorption/desorption and bioavailability analysis were carried out to estimate its potential as a P and N removal adsorbent in wasewater and a fertilizer in soil.

  • PDF

Evaluation of Natural Attenuation by Addition of Fumarate as Carbon Source and Gene Analysis in Groundwater Sample (지하수 중 탄소원으로 fumarate 주입과 유전자분석을 통한 질산성질소 자연저감도 평가)

  • Park, Sunhwa;Kim, Hyun-Gu;Kim, Sohyun;Lee, Min-Kyeong;Lee, Gyeong-Mi;Kim, Young;Kim, Moon-Su;Kim, Taeseung
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.4
    • /
    • pp.62-69
    • /
    • 2014
  • In the results of monitoring nitrate concentration in more than 8,000 groundwater wells around agro-livestock, the average and maximum nitrate concentration was 9.4 mg/L and 101.2 mg/L, respectively. Since about 31% of the monitoring wells was exceed the quality standard for drinking water, nitrate control such as remediation or source regulation is required to conserve safe-groundwater in South Korea. Typical nitrate-treatment technologies include ion exchange, reverse osmosis, and biological denitrification. Among the treatment methods, biological denitrification by indigenous microorganism has environmental and economic advantages for the complete elimination of nitrate because of lower operating costs compared to other methods. Major mechanism of the process is microbial reduction of nitrate to nitrite and nitrogen gas. Three functional genes (nosZ, nirK, nirS) that encode for the enzyme involved in the pathway. In this work, we tried to develop simple process to determine possibility of natural denitrification reaction by monitoring the functional gene. For the work, the functional genes in nitrate-contaminated groundwater were monitored by using PCR with specific target primers. In the result, functional genes (nosZ and nirK) encoding denitrification enzymes were detected in the groundwater samples. This method can help to determine the possibility of natural-nitrate degradation in target groundwater wells without multiplex experimental process. In addition, for field-remediation application we selected nitrate-contaminated site where 200~600 mg/L of nitrate is continuously detected. To determine the possibility of nitrate-degradation by stimulated-natural attenuation, groundwater was sampled in two different wells of the site and nitrate concentration of the samples was 300 mg/L and 616 mg/L, respectively. Fumarate for different C/N ratio was added into microcosm bottles containing the groundwater to examine denitrification rate depending on carbon concentration. In the result, once 1.5 times more than amount of fumarate stoichiometry required was added, the 616 mg/L of nitrate and 300 mg/L of nitrate were completely degraded in 8 days and 30 days. The nitrite, byproduct of denitrification process, was also completely degraded during the experimental period.

Simultaneous Removal of Nitrate and Trichloroethylene by Zero Valent Iron and Peat (영가철과 피트를 이용한 질산성질소와 트리클로로에틸렌의 제거)

  • Min, Jee-Eun;Kim, Mee-Jeong;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1074-1081
    • /
    • 2006
  • As common pollutants in surface and groundwater, nitrate nitrogen($NO_3-N$) and trichloroethylene(TCE) can be chemically and biologically reduced by zero valent iron(ZVI) and peat soil. In batch microcosm experiments, chemical reduction of TCE and nitrate was supported by hydrogen from ZVI. For biological degradation of TCE and denitrification peat soil was introduced. ZVI reduced TCE, while peat provided TCE sorption site and microbes performing biological degradation. Nitrate reduction was also achieved by hydrogen from ZVI. In addition, indirect evidence of denitrification was observed. More reduction of TCE and nitrate was achieved by ZVI+peat treatment however nitrated reduction was hindered in the presence of TCE in the system due to the competition for hydrogen. TCE reduction mechanism was more dependent on ZVI, while nitrate was peat-dependent. Hydrogen and methane concentration showed that peat had various anaerobic denitryfing and halorespiring bacteria.

Hydrochemistry of an alluvial aquifer in the Cheonan area: role of the pyrite oxidation on denitrification

  • Kim, Kyoung-Ho;Yun, Seong-Taek;Chae, Gi-Tak;Heo, Chul-Ho;Kim, Hyoung-Soo;Rhee, Chul-Woo;Kim, Kangjoo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.287-290
    • /
    • 2002
  • To examine the denitrification process in an alluvial aquifer in the Cheonan site, hydrological and hydrogeochemical studies were carried out. Elevated levels of NO$_3$ (maximum 77.6 mg/L) were observed in shallow groundwaters of the area, as a result of poultry and agricultural activity. However, the nitrate concentrations were found to be consistently attenuated down to very low levels (<1.0 mg/L). The abrupt removal of nitrate coincided with the pattern of redox change and indicated that denitrification is the most plausible process. The hydrochemistry and mass balance approach using geochemical modeling (phreeqc 2.0) and redox chemistry indicated that chemo-autotrophic denitrification via pyrite oxidation is the key Process to control the nitrate attenuation in the study area.

  • PDF

Assessment of Nitrate Leaching from Cultivated Land by LEACHN (LEACHN을 이용한 경작지의 질소 유출 평가)

  • Jung, Young-Wook;Kim, Mee-Jeong;Oh, Dong-Sik;Park, Jae-Woo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.803-806
    • /
    • 2008
  • LEACHN is the computer simulation model which can be used to simulate field-scale N transformations and movement and has three organic pools (plant residue, manure, and soil humus), three inorganic pools (urea, nitrate and ammonium) and plant. Pot experiment operated May to October in 2004. LEACHN simulated the nitrogen movement and transformation in soil using method of PEST and trial and error.

  • PDF

Changes of Tomato Growth and Soil Chemical Properties as Affected by Soil pH and Nitrogen Fertilizers (토양 pH와 질소 관비 비종에 따른 토마토 생육 및 토양화학성 변화)

  • Kang, Yun-Im;Roh, Mi-Young;Kwon, Joon-Kook;Park, Kyoung-Sub;Cho, Myeong-Whan;Lee, Si-Young;Lee, In-Bok;Kang, Nam-Jun
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.4
    • /
    • pp.328-335
    • /
    • 2010
  • This study was conducted to determine effects of soil pH and form of nitrogen fertilizers on tomato growth and chemical properties of greenhouse soil using ferigation system. Tomato (Lycopersicon esculentum Mill. cv. Superdoterang) were grown for three months in 18 L pots filled with two soil (pH 6.8 and pH 8.7). 4 different nitrogen fertilizers (urea, ammonium nitrate, ammonium sulfate, and potassium nitrate) were fertigated with different concentrations of 0, 10, 50, and 100 mg N/L during tomato cultivation. Soil pH 8.7 decreased yield and chlorophyll fluorescence compared with soil pH 6.8. Yield at soil pH 8.7 increased by ammonium nitrate and ammonium sulfate fertigation. Soil pH 6.8 induced increment of yield by nitrogen concentration than form of nitrogen fertilizers. Soil pH after cultivation of tomato decreased by application of ammonium nitrate and ammonium sulfate. Soil EC by 100 mg N/L application of ammonium sulfate was twice as much as other fertilizers. Form of nitrogen fertilizer had less effect on concentration of soil $NH_4^+$-N and $NO_3^-$-N in soil but the concentrations slightly reduced at pH 8.7. These results indicate that application of urea and ammonium nitrate for a nitrogen source of fertigation has little affects on soil chemical properties before and after tomato cultivation.

Effects of cow manure compost on anion elution patterns and hydraulic conductivity (우분퇴비 처리에 따른 토양내 음이온의 용출특성과 투수특성 변화)

  • 정덕영;김필주;박무언;이병렬;김건엽
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1996.11a
    • /
    • pp.131-139
    • /
    • 1996
  • To quantitatively investigate the effects of manure compost on the soil and water environment including ground water the elution patterns of anions and hydraulic conductivity wore estimated with four different depth(15, 30, 45 60cm) and four variable ratio of compost treatment(0, 2, 4, 6%) through soil column test. 1. There were over 95% of elution of chloride and nitrate within 0.1 pore volume(PV), and sulfate within 0.2 PV. With 2 ton/10a of cow manure compost treatment recommended total 40 kg/10a of anions added was recovered as effluent at the amount of 17kg chloride, 5.4kg nitrate, and 13.2kg sulfate, respectively However, phosphate rarely recovered in the effluent due to the strong affinity for sorption sites in soils. 2. In multi-layered soil column the maximum peaks of each anion eluted were retardated with increasing soil depth and the amount of organic matter(OM) treatment. 3. With increasing OM up to 2% the saturated hydraulic conductivity(SHC) was greatly decreased, but the slight decrease in SHC was found by addition of OM greater than 4%. In multi-layered soil column SHC was more effected by the lower SHV layer than by that of the higher.

  • PDF

Effects of Application Seasons and Levels of Cattle Slurry Nitrate Contents in Soils of Rye CuItivation (액상발효우분의 시용시기와 시용량이 호밀경작지 토양의 NO3- 함량에 미치는 영향)

  • Yook, W.B.;Choi, K.C.;An, S.H.;Lee, J.K.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.19 no.2
    • /
    • pp.141-146
    • /
    • 1999
  • This experiment was conducted to investigate the effects of application seasons and the level of cattle slurry on nitrate contents in soils of rye cultivation under climatic conditions of Korea. The main plots were appliaction seasons(100% application in spring, 100% application in autumn, 50% application in spring and autumnn after dividing cattle slurry into two equal parts) and subplots were the levels of cattle slurry-N application(0, 50, 100 and $200kgN\;ha^{-1}\;year^{-1}$). Cattle slurry was spred evenly over the soil surface in spring (end of March) and autumn(early of November). The experiment was done at Gongiam, Kwangju, Kyung-gi for 3 years, from 1994 to 1996. The results obtained are summarized as follows; 1. Nitrate content in soils was not influenced by application seasons of cattle slurry. 2. Nitrate content in soils increased as the level of cattle slurry application increased, and the average nitrate content became 3.6mg per liter. 3. Nitrate content in the soil depth from 0 to 20cm increased as the level of cattle slurry application increased, and the average nitrate content became 28.9mg per liter. However, nitrate content in the soil depth from 40 to 60cm was the lowest(7.5-8.3mg per liter).

  • PDF

A Comparative Study of Groundwater Vulnerability Assessment Methods: Application in Gumma, Korea (지하수 오염 취약성 기법의 비교 적용 연구: 충남 홍성군 금마면 일대에의 적용)

  • Ki, Min-Gyu;Yoon, Heesung;Koh, Dong-Chan;Hamm, Se-Yeong;Lee, Chung-Mo;Kim, Hyun-Su
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.3
    • /
    • pp.119-133
    • /
    • 2013
  • In the present study, several groundwater vulnerability assessment methods were applied to an agricultural area of Gumma in Korea. For the groundwater intrinsic vulnerability assessment, the performance of DRASTIC, SINTACS and GOD models was compared and an ensemble approach was suggested. M-DRASTIC and multi-linear regression (MLR) models were applied for the groundwater specific vulnerability assessment to nitrate of the study site. The correlation coefficient between the nitrate concentration and M-DRASTIC index was as low as 0.24. The result of the MLR model showed that the correlation coefficient is 0.62 and the areal extents of livestock farming and upland field are most influential factors for the nitrate contamination of groundwater in the study site.