• Title/Summary/Keyword: soil nitrate

Search Result 602, Processing Time 0.034 seconds

A Study on the Paddy Soil and Water Quality in Boryung Freshwater Reservoir Watershed-During the non-cropping season- (보령 담수호 유역의 논토양 및 하천수질 특성 -비영농기간을 중심으로)

  • 최진규;구자웅;손재권;한강완;조재영;김선주
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.651-656
    • /
    • 1999
  • This study was carried out to investigate the paddy soil and water quality in Boryung freshwater reservoir watershed during the non-cropping season. Soil pH of the Boryung freshwater reservoir watershed were 5.39∼5.78. Total-N and P contents were high by the accumulation of chemical fertilizer partly. Heavy metal content of paddy soils were natural background level. Water pH of the Boryung freshwater reservoir watershed ranged from 6.82 to 8.64. Total-N content affected by a livestock wastes and sewage water were the higher than that of others and total-P content showed below 0.1mg/L. Nitrate nitrogen contents was very high according to the influence a livestock waste and sewage water partly. Heavy metal contents of wateers were natural background level.

  • PDF

Suggestion of a Groundwater Quality Management Framework Using Threshold Values and Trend Analysis (문턱값과 추세분석을 이용한 지하수 수질관리체계 구축을 위한 연구)

  • An, Hyeonsil;Jee, Sung-Wook;Lee, Soo Jae;Hyun, Yunjung;Yoon, Heesung;Kim, Rak-Hyeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.112-120
    • /
    • 2015
  • Statistical trend analysis using the data from the National Groundwater Quality Monitoring Network (NGQMN) of Korea was conducted to establish a new groundwater quality management framework. Sen’s test, a non-parametric statistical method for trend analysis, was used to determine the linear trend of the groundwater quality data. The analysis was conducted at different confidence levels (i.e., at 70, 80, 90, 95, and 99% confidence levels) for three of groundwater quality parameters, i.e., nitrate-nitrogen, chloride, and pH, which have sufficient time series of the NGQMN data between 2007 and 2013. The results showed that different trends can be determined for different depths even for the same monitoring site and the numbers of wells having significant trends vary with different confidence levels. The wells with increasing or decreasing trends were far less than the wells with no trend. Chloride had more wells with increasing trend than other parameters. On the other hand, nitrate-nitrogen had the most wells with increasing trend and concentration exceeding 75% of the threshold values (TVs). Based on the methodology used for this study, we suggest including groundwater TVs and trend analysis to evaluate groundwater quality and to establish an advanced groundwater quality management framework.

About Chromium (VI) Extraction from Fertilizers and Soils

  • Sager Manfred
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.657-662
    • /
    • 2005
  • Extractions fro fertilizer and soil samples were performed to yield the operationally defined fractions 'soluble' chromate (extractable with $NH_4NO_3$), 'exchangeable' chromate (extractable with phosphate buffer pH 7.2), and these results were compared with the data obtained by extractions with ammonium sulfate, borate buffer pH 7.2, saturated borax pH 9.6, and polyphosphate (Graham's salt). In order to maintain the pH of extractant solution about constant, the concentration of extractant buffer had to be raised to at least 0.5 M. The results strongly depended on the kind of extractant, and the solid: liquid ratio. For most of the samples investigated, the extraction efficiency increased in the order borate-sulfate-nitrate-phosphate. Whereas the recovery of $K_2CrO_4\;and\;CaCrO_4$ added to the samples of basic slags prior to the extraction was about complete, the recovery of added $PbCrO_4$ was highly variable. In soil extracts, the color reaction was interfered from co-extracted humics, which react with the chromate in weak acid solution during the time period necessary for color reaction (1 hour). However, this problem can be overcome by standard addition and subtraction of the color of the extractant solution. In soil extract of about pH < 7, organic material reduced chromate during the extraction period also, and standard addition of soluble chromate is recommended to prove recovery and the stability of chromate in the samples. In admixtures of soils and basic slags, results for hexavalent chromium were lower than from the mere basic slags. This effect was more pronounced in phosphate than in nitrate extracts. As a proficiency test, samples low in organic carbon from contaminated sites in Hungary were tested. The results from $NH_4NO_3$ extracts satisfactorily matched the results of the Hungarian labs obtained from $CalCl_2$ extractants.

Isolation and Characterization of Pretense Producing Bacteria from Soil (토양으로부터 Protease 생산 세균의 분리 및 특성)

  • 김관필;이창호;우철주;김남형;배동호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.5
    • /
    • pp.754-759
    • /
    • 2002
  • In order to develope a new pretense applicable to industries, a bacterium which produces a remarkable amount of extracellular pretense were isolated from soil. About 10 bacterial strains producing pretense were isolated from samples of soil, and strain PANH765 showed the highest activity of pretense production among them. The strain was identified as Bacillus subtilis according to the Bergey's Manual of Systematic Bacteriology based on its morphological, cultural and physiological characteristics. B. subtilis PANH765 showed the maximal production of pro-tease in the medium containing 2.0% glucose, 1.0% yeast extract, 0.2% ammonium nitrate, 0.02% ferrous sulfate and 0.02% dipotassium hydrogen phosphate. Under the optimal condition with temperature of 3$0^{\circ}C$, initial pH of 7.0 and shaking speed of 150 rpm, the pretense production reached a maximum level with 36 hr cultivation (6.34 U).

Adsorption Properties and Production of Biosorbent from Bacillus sp. SK31 (Bacillus sp. SK3l의 생물흡착제 흡착특성 및 생산)

  • 서현호;김형갑
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.33-43
    • /
    • 1999
  • A strain (designated SK3l) which produces an excellent adsorption substance was isolated from soil samples and identified as Bacillus specied. The major adsorption substance (biosorbent SK3l) produced by Bacillus sp. SK31 was purified by ethanol precipitation and cetylpyridinium (CPC) precipitation. The adsorption charactics of zinc and lead ions on bioadsorbent SK3l were investigated. The equilibrium isotherms showed that bioadsorbent SK3l took up zinc and lead from aqueous solutions to the extent of about 52 mg/g and 112 mg/g. respectively. The culture conditions at the flask level of Bacillus sp. SK3l were investigated for the production of polysaccharide bioadsorbent, SK3l. The optimum pH and temperature for sorbent production were 7.5 and $30^{\circ}C$, respectively. The important carbon and nitrogen sources for sorbent formation were glucose and ammonium nitrate, respectively. In the optimized medium, sorbent production was improved three folds in comparison with the basal medium. In the jar fermenter, the highest sorbent production was obtained at 60 h cu1tivation time and the amount of biosorbent SK3l at that time was 9.2 g/$m\ell$.

  • PDF

Identifying N sources that affect N uptake and assimilation in Vanda hybrid using 15N tracers

  • Panjama, Kanokwan;Ohyama, Takuji;Ohtake, Norikuni;Sato, Takashi;Potapohn, Nuttha;Sueyoshi, Kuni;Ruamrungsri, Soraya
    • Horticulture, Environment, and Biotechnology : HEB
    • /
    • v.59 no.6
    • /
    • pp.805-813
    • /
    • 2018
  • Vanda is an aerial tropical orchid native to Thailand and nitrogen (N) fertilizer is mainly used to promote its growth and quality. However, little is known about the characteristics of N absorption and assimilation in Vanda. The objective of this study was to determine the appropriate source of N for Vanda cultivation. In this experiment, shoots and roots of Vanda 'Ratchaburi Fuchs-Katsura' were sprayed weekly with 100 ml of $^{15}N$ tracer solution (1) 10 mM of $^{15}NO_3{^-}$, (2) 5 mM of $^{15}NO_3{^-}$ plus 5 mM of $NH_4{^+}$, (3) 5 mM of $NO_3{^-}$ plus 5 mM of $^{15}NH_4{^+}$ and (4) 10 mM of $^{15}NH_4{^+}$. The results indicated that plants fed with a combined N fertilizer gave the highest of $^{15}N$ use efficiency ( $^{15}NUE$) of about 21.8%, 30 days after the first feeding (DAF), compared with those fed sole sources of $^{15}NO_3{^-}$ (21.0%) and $^{15}NH_4{^+}$ (16.6%). However, a sole nitrate fertilizer or combination fertilizer did not significantly affect the total N and labelled N content. Alanine was a major amino acid found in leaves and roots at 7 DAF, whereas glutamine was mainly found in stems. At 30 DAF, tyrosine and alanine became major components in the leaves, and glutamine decreased in stems when plants were fed with a single $^{15}NH_4{^+}$ source.

Nitrogen and Phosphorus Removal from Plating Wastewater Using the Soil Reactor (토양 반응조를 이용한 도금폐수 중의 질소 및 인 제거)

  • Cheong, Kyung-Hoon;Choi, Hyung-Il;Shin, Dae-Yun;Im, Byung-Gab;Jeon, Gee-Seok
    • Journal of Environmental Science International
    • /
    • v.18 no.2
    • /
    • pp.205-213
    • /
    • 2009
  • A laboratory experiment was conducted to investigate nitrogen removal from plating wastewater by a soil reactor. A combination of soil, waste oyster shell and activated sludge were used as a loading media in a soil reactor. The addition of 20% waste oyster shell and activated sludge to the soil accelerated nitrification (88.6% ${NH_4}^{+}-N$ removal efficiency) and denitrification (84.3% ${NO_3}^{-}-N$ removal) in the soil reactor, respectively. In continuous removal, the influent ${NH_4}^{+}-N$ was mostly converted to nitrate nitrogen in the nitrification soil reactor and only a small amount of ${NH_4}^{+}-N$ was found in the effluent. When methanol was added as a carbon source to the denitrification soil reactor, the average removal efficiency of ${NO_3}^{-}-N$ significantly increased. The ${NO_3}^{-}-N$ removal by methanol addition in the denitrification soil reactor was mainly due to denitrification. The phosphorus was removed by the waste oyster shell media in the nitrification soil reactor. Moreover, the phosphorus removal in the denitrification soil reactor was achieved by synthesis of bacteria and the denitrification under anaerobic conditions. The approximate number of nitrifiers and denitrifiers was $3.3{\times}10^5\;MPN/g$ soil at a depth of $1{\sim}10\;cm$ and $3.3{\times}10^6\;MPN/g$ soil at a depth of $10{\sim}20\;cm$, respectively, in the soil reactor mixed with a waste oyster shell media and activated sludge.

Enhancement of Denitrification Capacity of Pseudomonas sp. KY1 through the Optimization of C/N ratio of Liquid Molasses and Nitrate (액상 당밀과 질산성 질소의 C/N 비율에 따른 Pseudomonas sp. KY1의 탈질 능력 및 그 최적비율에 관한 연구)

  • Lee, Kyuyeon;Lee, Byung Sun;Shin, Doyun;Choi, Yongju;Nam, Kyoungphile
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.654-659
    • /
    • 2013
  • This study was conducted to identify an optimal ratio of carbon to nitrogen (C/N ratio) for denitrification of nitrate using molasses as an external carbon source. A series of batch and column tests was conducted using an indigenous bacterium Pseudomonas sp. KY1 isolated from a nitrate-contaminated soil. For the initial nitrate-nitrogen concentration of 100 mg-N/L, batch test results indicated that C/N ratio of 3/1 was the optimal ratio with a relatively high pseudo-first-order reaction constant of $0.0263hr^{-1}$. At C/N ratio of 3/1, more than 80% of nitrate-nitrogen concentration of 100 mg-N/L was removed in 100 hrs. Results of column tests with a flow velocity of 0.3 mL/min also indicated that the C/N ratio of 3/1 was optimal for denitrification with minimizing remaining molasses concentrations. After 172 hrs of column operation (35 pore volumes) with an influent nitrate-nitrogen concentration of 100 mg-N/L, the effluent met the drinking water standard (i.e., 10 mg $NO_3$-N/L).

Estimation of Optimum Application Rate of Nitrogen Fertilizer Based on Soil Nitrate Concentration for Tomato Cultivation in Plastic Film House (토양의 질산태 질소 검정에 의한 시설재배 방울토마토의 질소 적정시비량 추정)

  • Kang, Seong-Soo;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.2
    • /
    • pp.74-82
    • /
    • 2004
  • This study was conducted to estimate the optimum application rate of fertilizer N based on $NO_3-N$ concentration in soils for tomato (Lycopersicon esculentum Mill.) cultivation in plastic film house. Tomato plants were cultivated with and without fertilizer in twelve soils which have different concentrations of $NO_3-N$ ranging from 46 to $344mg\;kg^{-1}$. Dry weight (DW) of above-ground part of tomato with no fertilizer ranged from 28.9 to $112.5g\;plant^{-1}$, depending on N-supplying capability of soils. The soil $NO_3-N$ was positively correlated with DW ($r=0.83^{**}$) and N uptake ($r=0.78^{**}$) by tomatoes in no fertilizer treatment, and negatively correlated with fertilizer effciencies resulted from the differences of DW and N uptake between fertilized and non-fertilized plot. The relationships between soil $NO_3-N$ concentration and DW, N uptake, and fertilizer efficiency were analyzed to determine the critical levels of soil $NO_3-N$ for tomato cultivation. The limit critical levels of soil $NO_3-N$ were estimated to be more than $280mg\;kg^{-1}$ for no application of fertilizer N and to be less than $50mg\;kg^{-1}$ for recommended application of fertilizer N. These critical levels of soil $NO_3-N$ were nearly the same as those calculated from regression equation between electrical conductivity(EC) and soil nitrate for critical levels of EC in recommendation equation of fertilizer N for tomato under the plastic film house by NationaI Institute of Agricultural Science and Technology. Consequently, the optimal application rate of ferdilizer N for tomato cultivation in the soils containing $NO_3-N$ concentration between $280mg\;kg^{-1}$ and $50mg\;kg^{-1}$ was estimated by the equation Y = -0.4348X+121.74, where Y is the percent(%) to the recommended application rate of N fertilizer and X is the soil $NO_3-N$ concentration ($mg\;kg^{-1}$).

Spectrophotometric Determination of Soil Chemical Properties Using Soiltek® KA-P Spectrophotometer (Soiltek KA-P 분광광도계률 사용한 토양 화학적 성질의 분광학적 분석)

  • Hyun, Hae-Nam;Oh, Sang-Sil;Koo, Bon-Jun;Kang, Ho-Jun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.2
    • /
    • pp.127-138
    • /
    • 2000
  • To enable rapid and convenient soil test, new soil analytical methods, which require only one instrument, UV/Vis spectrophotometer, were developed and named "Soiltek KA-P spectrophotometric methods". The Soiltek$^{(R)}$ KA-P spectrophotometric method was compared with standard method of RDA in analytical capability for soil chemical properties. Using the 78 soils collected from upland, paddy, orchard, and vinyl house soils, soil organic matter, exchangeable K, Ca, and Mg. CEC, available $SiO_2$, and nitrate were analyzed by the two methods. The color stability(ratio of the absorbance at elapsed time t to the absorbance at time t=0) of organic matter. Ca, Mg, and available $SiO_2$ decreased to about 2% within one hour. However, that of exchangeable K, CEC, and nitrate remained constant. The results obtained with Soiltek$^{(R)}$ KA-P spectrophotometric method showed highly significant correlation with those measured by the standard method of RDA($R^2$ >0.9501), in which the slopes were near unity of $1.0{\pm}0.05$. The standard deviation values of organic matter, exchangeable K, Ca, and Mg, CEC, available $SiO_2$, and nitrate were apparently lower than ${\pm}1.8gkg^{-1}$, ${\pm}0.05cmol^+kg^{-1}$, ${\pm}0.18cmol^+kg^{-1}$, and ${\pm}0.13cmol^+kg^{-1}$, ${\pm}1.0cmol^+kg^{-1}$, ${\pm}5.0mgkg^{-1}$, and ${\pm}10.0mgkg^{-1}$, respectively. All the measurements showed coefficients of variation of less than 7~17% and were within the confidence level of 95%, which means both the methods are precise. Considering the relative simplicity, low cost, precision and accuracy, the proposed Soiltek$^{(R)}$ KA-P spectrophotometric methods could be recommended as an alternative to standard method.

  • PDF