• Title/Summary/Keyword: soil moisture potential

Search Result 174, Processing Time 0.022 seconds

Effect of Temperature, Soil Water Potential and Osmoconditioning on Germination and Seedling Elongation of Corn and Soybeans (온도ㆍ토양수분 포텐셜 및 삼투처리가 옥수수와 대두의 발아 및 묘신장에 미치는 영향)

  • Seong, Rak-Chun;Minor, Harry C.;Park, Keun-Yong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.1
    • /
    • pp.56-61
    • /
    • 1986
  • Germination and seedling elongation of maize (Dekalb XL 72B), and soybeans (Williams) were measured at two temperatures (15 and 35$^{\circ}C$), three soil water potentials (-1.50, -0.5, and -0.05 MPa), and four polyethy-lene glycol 8000 (PEG) levels (0, 20, 30, and 50 percent). Twenty conditioned seeds of each cultivar were treated with 0.2% thiram and planted 2 cm deep in sterilized Mexico silt loam soil which was subsequently compacted to a bulk density of 1.20 g/㎤. Seedling moisture content, dry weight, and length were measured for each treatment combination. Osmoconditioning with PEG showed little effect at high temperature or low soil water potential conditions. Soybeans had higher seedling moisture content than corn and both crops in-creased moisture uptake as soil water potential and temperature increased. Seedling length of corn was longer than soybeans at 35$^{\circ}C$ but shorter at 15$^{\circ}C$. Seedling dry weight of corn decreased at 35$^{\circ}C$ and that of soybeans decreased as soil water potential increased.

  • PDF

Soil Moisture Estimation Using KOMPSAT-3 and KOMPSAT-5 SAR Images and Its Validation: A Case Study of Western Area in Jeju Island (KOMPSAT-3와 KOMPSAT-5 SAR 영상을 이용한 토양수분 산정과 결과 검증: 제주 서부지역 사례 연구)

  • Jihyun Lee;Hayoung Lee;Kwangseob Kim;Kiwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1185-1193
    • /
    • 2023
  • The increasing interest in soil moisture data from satellite imagery for applications in hydrology, meteorology, and agriculture has led to the development of methods to produce variable-resolution soil moisture maps. Research on accurate soil moisture estimation using satellite imagery is essential for remote sensing applications. The purpose of this study is to generate a soil moisture estimation map for a test area using KOMPSAT-3/3A and KOMPSAT-5 SAR imagery and to quantitatively compare the results with soil moisture data from the Soil Moisture Active Passive (SMAP) mission provided by NASA, with a focus on accuracy validation. In addition, the Korean Environmental Geographic Information Service (EGIS) land cover map was used to determine soil moisture, especially in agricultural and forested regions. The selected test area for this study is the western part of Jeju, South Korea, where input data were available for the soil moisture estimation algorithm based on the Water Cloud Model (WCM). Synthetic Aperture Radar (SAR) imagery from KOMPSAT-5 HV and Sentinel-1 VV were used for soil moisture estimation, while vegetation indices were calculated from the surface reflectance of KOMPSAT-3 imagery. Comparison of the derived soil moisture results with SMAP (L-3) and SMAP (L-4) data by differencing showed a mean difference of 4.13±3.60 p% and 14.24±2.10 p%, respectively, indicating a level of agreement. This research suggests the potential for producing highly accurate and precise soil moisture maps using future South Korean satellite imagery and publicly available data sources, as demonstrated in this study.

Use of uniform distribution for generating synthetic brightness temperature in passive microwave soil moisture retrieval

  • Lee Khil-Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.19-28
    • /
    • 2005
  • Passive microwave remote sensing technique have shown great potential for mon monitoring regional/global surface soil moisture. Given a single measurement at dual polarization/single frequency/single view angle, a strategic approach to artificially generating multiple microwave brightness temperatures is presented. And then the statistically generated microwave brightness temperature data are applied to the inverse algorithm, which mainly relies on a physically based microwave emission model and an advanced single-criterion multi-parameter optimization technique, to simultaneously retrieve soil moisture and vegetation characteristics. . The procedure is tested with dual polarized Tropical Rainfall Measurement Mission Microwave Imager (TRMM/TMI) over two different cover sites in Oklahoma and Beltsville field experimental data. The retrieval results are analyzed and show excellent performance.

  • PDF

A Study of Soil Moisture Retention Relation using Weather Radar Image Data

  • Choi, Jeongho;Han, Myoungsun;Lim, Sanghun;Kim, Donggu;Jang, Bong-joo
    • Journal of Multimedia Information System
    • /
    • v.5 no.4
    • /
    • pp.235-244
    • /
    • 2018
  • Potential maximum soil moisture retention (S) is a dominant parameter in the Soil Conservation Service (SCS; now called the USDA Natural Resources Conservation Service (NRCS)) runoff Curve Number (CN) method commonly used in hydrologic modeling for event-based flood forecasting (SCS, 1985). Physically, S represents the depth [L] soil could store water through infiltration. The depth of soil moisture retention will vary depending on infiltration from previous rainfall events; an adjustment is usually made using a factor for Antecedent Moisture Conditions (AMCs). Application of the method for continuous simulation of multiple storms has typically involved updating the AMC and S. However, these studies have focused on a time step where S is allowed to vary at daily or longer time scales. While useful for hydrologic events that span multiple days, this temporal resolution is too coarse for short-term applications such as flash flood events. In this study, an approach for deriving a time-variable potential maximum soil moisture retention curve (S-curve) at hourly time-scales is presented. The methodology is applied to the Napa River basin, California. Rainfall events from 2011 to 2012 are used for estimating the event-based S. As a result, we derive an S-curve which is classified into three sections depending on the recovery rate of S for soil moisture conditions ranging from 1) dry, 2) transitional from dry to wet, and 3) wet. The first section is described as gradually increasing recovering S (0.97 mm/hr or 23.28 mm/day), the second section is described as steeply recovering S (2.11 mm/hr or 50.64 mm/day) and the third section is described as gradually decreasing recovery (0.34 mm/hr or 8.16 mm/day). Using the S-curve, we can estimate the hourly change of soil moisture content according to the time duration after rainfall cessation, which is then used to estimate direct runoff for a continuous simulation for flood forecasting.

Effects of Environmental Factors on the Cambial Electrical Resistance of Woody Plants (목본식물 형성층 전기저항에 영향을 주는 환경 요인)

  • Kim, Dong-Uk;Kim, Min-Soo;Lee, Bu-Yong
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.35 no.3
    • /
    • pp.105-113
    • /
    • 2007
  • This study was conducted to analyze the effects of environmental factors such as soil moisture, light intensity, temperature and humidity on changes in cambial electrical resistance. To improve data quality, cambial electrical resistance was continuously measured at fixed points by using a data logger isolated from alternating current. The relationship between environmental factors and changes in cambial electrical resistance was also analyzed. The results are as follows: 1. Cambial electrical resistance is highly correlated to the temperature of the measured area(r=-0.934). Therefore, temperature compensation is needed to analyze the effects of other environmental factors on cambial electrical resistance changes. 2. If temperature is compensated for, the change of cambial electrical resistance is highly correlated to water vapor pressure(r=-0.836). 3. If temperature and humidity are compensated for, the change of cambial electrical resistance is highly correlated to intensity of light(r=-0.738). 4. Diurnal deviation of soil water potential is not more significantly related than the change of cambial electrical resistance. However, in the long-term, soil water potential and cambial electrical resistance are highly correlated(r=-0.831). This indicates that soil moisture significantly influences the long-term change of cambial electrical resistance.

Improvement of Soil Moisture Initialization for a Global Seasonal Forecast System (전지구 계절 예측 시스템의 토양수분 초기화 방법 개선)

  • Seo, Eunkyo;Lee, Myong-In;Jeong, Jee-Hoon;Kang, Hyun-Suk;Won, Duk-Jin
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.35-45
    • /
    • 2016
  • Initialization of the global seasonal forecast system is as much important as the quality of the embedded climate model for the climate prediction in sub-seasonal time scale. Recent studies have emphasized the important role of soil moisture initialization, suggesting a significant increase in the prediction skill particularly in the mid-latitude land area where the influence of sea surface temperature in the tropics is less crucial and the potential predictability is supplemented by land-atmosphere interaction. This study developed a new soil moisture initialization method applicable to the KMA operational seasonal forecasting system. The method includes first the long-term integration of the offline land surface model driven by observed atmospheric forcing and precipitation. This soil moisture reanalysis is given for the initial state in the ensemble seasonal forecasts through a simple anomaly initialization technique to avoid the simulation drift caused by the systematic model bias. To evaluate the impact of the soil moisture initialization, two sets of long-term, 10-member ensemble experiment runs have been conducted for 1996~2009. As a result, the soil moisture initialization improves the prediction skill of surface air temperature significantly at the zero to one month forecast lead (up to ~60 days forecast lead), although the skill increase in precipitation is less significant. This study suggests that improvements of the prediction in the sub-seasonal timescale require the improvement in the quality of initial data as well as the adequate treatment of the model systematic bias.

Development of Crop Growth Model under Different Soil Moisture Status

  • Goto, Keita;Yabuta, Shin;Sakagami, Jun-Ichi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2019.09a
    • /
    • pp.19-19
    • /
    • 2019
  • It is necessary to maintain stable crop productions under the unsuitable environments, because the drought and flood may be frequently caused by the global warming. Therefore, it is agent to improve the crop growth model corresponded to soil moisture status. Chili pepper (Capsicum annuum) is one of the useful crop in Asia, and then it is affected by change of precipitation in consequence drought and flood occur however crop model to evaluate water stresses on chili pepper is not enough yet. In this study, development of crop model under different soil moisture status was attempted. The experiment was conducted on the slope fields in the greenhouse. The water level was kept at 20cm above the bottom of the container. Habanero (C. chinense) was used as material for crop model. Sap bleeding rate, SPAD value, chlorophyll content, stomatal conductance, leaf water potential, plant height, leaf area and shoot dry weight were measured at 10 days after treatment (DAT) and 13 DAT. Moreover, temperature and RH in the greenhouse, soil volume water contents (VWC) and soil water potential were measured. As a result, VWC showed 4.0% at the driest plot and 31.4% at the wettest plot at 13 DAT. The growth model was calculated using WVC and the growth analysis parameters. It was considered available, because its coefficient of determination showed 0.84 and there are significant relationship based on plants physiology among the parameters and the changes over time. Furthermore, we analyzed the important factors for higher accuracy prediction using multiple regression analysis.

  • PDF

The Effect of Soil Moisture Stress on the Growth of Barley and Grain Quality (토양수분 스트레스가 보리생육 및 종실품질에 미치는 영향)

  • Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.165-175
    • /
    • 1995
  • To determine the effect of soil moisture stress on growth of barley and grain quality, a pot experiment was carried out for two barley varieties(Olbori and Chogangbori) by using large plastic pot(52cm in diameter and 55cm in depth) filled with sandy loam soil under rain-controlled open green house. By means of measuring soil water potential with micro tensiometer and gypsum block installed at 10cm in soil depth, soil moisture was controlled by sub-irrigation at several irigation points such as -0.05bar, -0.2bar, -0.5bar, -1.0bar, -5.0bar and -10.0bar in soil water potential. The lower soil water potential was controlled, the shorter length of stem and internode became, and the more narrow stem diameter was. Leaf area was significantly decreased when soil water potential was controlled lower than -0.5bar, although chlorophyll content of flag and first leaves was not changed so much. Weight of grain and ear was significantly decreased when soil water potential was lower than -5.0bar and the highest grain yield was obtaind in a plot where soil water potential was controlled at -0.2bar. However, the most efficient water use of Olbori and Chogangbori was obtained at -0.5bar and -1.0bar in water potentials, respectively. Crude protain content, maximum viscosity, consistency and ${\beta}$-glucan content of barley flour increased as soil water potential significantly decreased, especially below -5.0bar, but gelatination temperature decreased as soil water potential decreased.

  • PDF

Effects of Water Potential on Plant Growth and Aerenchyma Development in Adlay(Coix lacryma-jobi L. var. mayuen) (토양수분 차이가 율무의 생장과 통기조직 발달에 미치는 영향)

  • 김정태;박희생;김성만;이성환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.6
    • /
    • pp.778-782
    • /
    • 1997
  • Effects of different water potential on the growth and aerenchyma development of Adlay(Coix lacryma-jobi L. var. mayuen) were studied under every 3 days intermittent irrigation as a control at different growth stages, flooded pot condition and drought. Adlay could not germinate in the anaerobic soil conditions with excessive moisture while it wasn't inflicted with moisture damage after sprouting. Sprouted adlay can grow under flooded soil moisture condition because it's root has orthostichy cell, ventilating structure and cortex. Proping or ventilating roots were generated from adlay grown under flooded pots. Drought damage inflicted at the heading stage was the most severe.

  • PDF

A Case Study on the Factors of Obstacles to Growth of Planted Trees in the Gimcheon Jakjumgogae of Baekdudaegan Ecological Axis Restoration Site (김천 작점고개 백두대간 마루금 복원사업지 내 식재수목의 생육 장애 요인에 관한 연구)

  • Kim, Su-Jin;Park, Hyun-Bin
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.4
    • /
    • pp.422-432
    • /
    • 2022
  • Soil and micro-climatic environmental monitoring was conducted to evaluate the factors causing tree growth impediments at the Baekdudaegan ecological axis restoration project site. As a result, it was found that the nutrient supply was insufficient in the restoration project site due to the lack of organic matter, total nitrogen and cation exchange capacity of the soil compared to the surrounding forest. After the completion of the restoration, the soil moisture in the autumn decreased more than 7 times faster than that of the surrounding forest, and it was evaluated that the soil moisture was significantly low due to the lack of silt and clay content. In the case of the restoration site, the annual potential evapotranspiration was analyzed to be 975mm, which is approximately two times higher than that of the surrounding forest. The soil moisture of the restoration site in the summer decreased rapidly during the daytime when the amount of insolation increased and this was found to be strongly influenced by the increase in potential evapotranspiration. In order to improve the above factors affecting the tree growth at the Baekdudaegan ecological axis restoration project site, it is necessary to induce the smooth supply of nutrients and water to plants by improving physical proprieties and cation exchange capacity, i.e., using litterfall, humus soil, soil conditioner and organic fertilizer. The results of this study are expected to serve as basic data for the design, construction, and management of ecological axis restoration projects in the future.