• 제목/요약/키워드: soil moisture movement

검색결과 36건 처리시간 0.021초

점적관개에 따른 토양수분 재분배 균일성 평가 (Uniformity Assessment of Soil Moisture Redistribution for Drip Irrigation)

  • 최순군;최진용;남원호;허승오;김학진;정선옥;한경화
    • 한국농공학회논문집
    • /
    • 제54권3호
    • /
    • pp.19-28
    • /
    • 2012
  • Greenhouse cultivation has been increasing for high quality and four season crop production in South Korea. For the cultivation in a greenhouse, maintaining adequate soil moisture at each crop growth stage is quite important for yield stability and quality while the behavior of moisture movement in the soil has complexity and adequate moisture conditions for crops are vary. Drip irrigation systems have been disseminated in the greenhouse cultivation due to advantages including irrigation convenience and efficiency without savvy consideration of the soil moisture redistribution. This study aims to evaluate soil moisture movement of drip irrigation according to the soil moisture uniformity assessment. Richards equation and finite difference scheme were adapted to simulate soil moisture behavior in soil. Soil container experiment was conducted and the model was validated using the data from the experiment. Two discharge rate (1 ${\ell}/hr$ and 2 ${\ell}/hr$) and three spaces between the emitters (10 cm, 20 cm, and 30 cm) were used for irrigation system evaluation. Christiansen uniformity coefficient was also calculated to assess soil moisture redistribution uniformity. The results would propose design guidelines for drip irrigation system installation in the greenhouse cultivation.

시공간적, 계절적 특성을 고려한 사면에서의 토양수분의 거동파악 (Movement Analyzing of Soil Moisture at a Hillslope Scale Considering Spatial-Temporal and Seasonal Characteristics)

  • 오경준;곽용석;김도훈;김상현;김현준;김남원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.678-682
    • /
    • 2006
  • In order to analyze movement of soil moisture, Time Domain Reflectometry(TDR) with multiplex system has been installed at the Bumreunsa hillslope of Sulmachun Watershed to configure spatial-temporal variation pattern considering seasonal characteristic. An intensive surveying was performed to build a refined digital elevation model(DEM) and flow determination algorithms with inverse surveying have been applied to establish an efficient soil moisture monitoring system. Soil moisture data were collected through an intensive and long term monitoring 380 hrs in November of 2003 and 1037 hrs in May and June of 2004. Soil moisture data shows corresponding variation characteristics of soil moisture on the up slope, buffer, main channel zones of the hillslope which were classified from terrain analysis. Inferences and limitations of measured soil moisture data were discussed in conjunction with flow characteristic through terrain analysis.

  • PDF

관수(灌水)에 의(依)한 시비양분(施肥養分)의 토양중(土壤中) 이동(移動)에 관(關)한 연구(硏究) -2. 토양수분(土壤水分) 조건(條件)과 Cl와 P의 이동(移動) (Movement Of Applied Nutrients Through Soils By Irrigation -2. Effect of soil water on the movement of Cl and P in the soil)

  • 류관식;유순호;송관철
    • 한국토양비료학회지
    • /
    • 제24권3호
    • /
    • pp.159-164
    • /
    • 1991
  • 토양수분(土壤水分) 조건을 달리하였을 때 토양(土壤)에 시용한 양분(養分)이 작물(作物) 생육시기별(生育時期別)로 어떻게 이동(移動)하는가를 구명(究明)하기 위하여 본양(本良) 사양토(砂壤土) (Typic Udifluvents)에서 Ladino clover를 공시작물(供試作物)로 하여 microplot(D 20cm, L 85cm)시험(試驗)을 수행하였다. 토양수분장력(土壤水分張力)을 0.2, 1.0, 5.0 bar, 및 무관수의 4수준으로 하였을때 염소(鹽素) 이온의 하향(下向)이동은 토양수분(土壤水分) 조건이 좋을수록 빠르게 진행되어 관수점(灌水点) 0.2bar 처리구에서는 5.5개월후에는 모든 처리구에서 microplot 내 토층(土層)에서 Cl이온은 검출되지 않았다. 공시토양(供試土壤)은 유효인산(有效燐酸)함량이 매우높고 사질(砂質)임에도 인산비료(燐酸肥料)로 용과린을 사용하였기 때문에 인산(燐酸) 시용량이 많으며, 관수량이 많았으나 인산(燐酸)이 거의 이동(移動)되지 않아 시용 인산(燐酸)의 대부분이 시비지점(施肥地點)에 분포되어 있었다. 토양수분장력(土壤水分張力)이 낮게 유지된 구의 토양(土壤)일수록 유효태(有效態)로 침출되는 인산(燐酸)이 많고 식물체(植物體)에 의하여 흡수되는 양도 증가 하였다. 최종수확기(最終收穫期)에 무관계구에서는 시용(施用) 인산(燐酸)의 13%가 유효태(有效態)로 침출되고 14%가 작물(作物)에 흡수되었는데 비해 관수점(灌水点) 0.2bar 처리구에서는 24%가 침출되고 23%가 작물(作物)에 의해 흡수(吸收)되었다.

  • PDF

Growth and Yield Responses of Corn (Zea mays L.) as Affected by Growth Period and Irrigation Intensity

  • Nam, Hyo-Hoon;Seo, Myung-Chul;Cho, Hyun-Suk;Lee, Yun-Ho;Seo, Young-Jin
    • 한국토양비료학회지
    • /
    • 제50권6호
    • /
    • pp.674-683
    • /
    • 2017
  • The frequency and intensity of soil moisture stress associated with climate change has increasing, and the stability of field crop cultivation has decreasing. This experiment was conducted to investigate the effect of soil moisture management method on growth and yield of corn. Soil moisture was managed at the grade of WSM (wet soil moisture, 34.0~42.9%), OSM (optimum soil moisture, 27.8~34.0%), DSM (dry soil moisture, 20.3~27.8%), and ESM (extreme dry moisture, 16.6~20.3%) during V8 (8th leaf stage)-VT (tasseling stage). After VT, irrigation was limited. The treated amount of irrigation was 54.1, 47.7, 44.0 and 34.5% of total water requirement, respectively. The potential evapotranspiration during the growing period was $3.29mm\;day^{-1}$, and upward movement of soil water was estimated by the AFKAE 0.5 model in the order of ESM, DSM, OSM, and WSM. We could confirm this phenomenon from actual observations. There was no significant difference in leaf characteristics, dry matter, and primary productivity depending on the level of soil moisture, but leaf development was delayed and dry weight decreased in DSM. However, dry weight and individual productivity of DSM increased after irrigation withdrawal compared to that of OSM. In DSM, ear yield and number of kernels per ear decreased, but water use efficiency and harvest index were higher than other treatments. Therefore, it is considered that the soil moisture is concentratedly managed before the V8 period, the V8-VT period is controlled within the range of 100 to 500 kPa (20.3~27.8%), and no additional irrigation is required after the VT.

토양수분(土壤水分) 조건(條件)에 따른 Ca, Mg 과 K 의 이동(移動) (Effect of Soil Water on the Movement of Ca, Mg and K in the Soil)

  • 류관식;류순호;송관철
    • 한국토양비료학회지
    • /
    • 제27권4호
    • /
    • pp.255-262
    • /
    • 1994
  • 밭 작물(作物) 재배시(栽培時) 토양(土壤)에 시용(施用)한 Ca, Mg 및 K가 토양(土壤)의 수분조건(水分條件)을 달리하였을 때, 작물(作物) 재배시기별(栽培時期別)로 어떻게 이동(移動)하는가를 구명(究明)하기 위하여 본양사양토(本良砂壤土)에서 Ladino clover를 재배하면서 microplot(지름 20cm, 길이 85cm) 시험(試驗)을 축행(逐行)하였다. 소석회(消石灰)를 시용(施用)했을 때 Ca은 거의 전량(全量)이 치환태(置換態)로 침출되었다. Ca은 토양수(土壤水)에 녹는 양(量)이 적어 대부분이 시비지점(施肥地點)에 분포(分布)되었고, 소석회(消石灰)가 토양수(土壤水)에 녹으면 비교적 빨리 하향이동(下向移動)되기 때문에 20~30cm 깊이의 토양(土壤)에서 Ca 함량이 가장 낮았으며 하층부(下層部)로 내려갈수록 그 함량(含量)이 다시 증가(增加)되었다. Mg도 Ca과 비슷한 이동양상(移動樣相)을 보였으나 토양수(土壤水)에 녹아 20cm 이하 토층(土層)으로 내려가면 그 아래 토층(土層)으로의 이동(移動)은 Ca보나 비교적 빨리 이루어졌으며, 생육후기(生育後期)에는 토양수분(土壤水分)이 좋을수록 microplot 외부로 용탈(溶脫)되는 양(量)이 많아지고 식물체(植物體)에 의한 흡수량(吸收量)도 많아졌다. K의 하향이동(下向移動)은 Ca과 Mg보다 빠르게 일어났다. 토양수분(土壤水分) 조건(條件)이 좋을수록 식물체(植物體)에 의한 K의 흡수량이 증가(增加)하는 한편 하향이동(下向移動)이 많이 일어나 microplot 외부(外部)로의 용탈량(溶脫量)이 증가하였다. 토양(土壤) 수분조건(水分條件)이 좋을수록 식물체(植物體)에 의한 양분(養分)의 흡수량이 많아져 무관수구(無灌水區)에서의 Ca, Mg, K의 흡수량 0.49, 0.21, 1.90g/microplot에 비하여 관수점(灌水點) 0.2bar 처리구에서는 각각 55, 71, 76%가 증가하였다. 이들 양분(養分)의 토양중(土壤中) 분포(分布)는 Mg의 경우 식물체(植物體)에 의한 흡수(吸收)가 69%나 되어 영향(影響)이 컸으며, K의 경우 식물체(植物體)에 의한 흡수(吸收)와 하향이동(下向移勳)이, Ca의 경우 토양내(土壤內)에서의 이동(移動)이 영향(影響)을 주었다고 생각된다.

  • PDF

봄, 가을철 시공간적 특성을 고려한 사면에서의 토양수분 거동파악 (Soil Moisture Monitoring at a Hillslope Scale Considering Spatial-Temporal Characteristics)

  • 오경준;이혜선;김도훈;김현준;김남원;김상현
    • 한국수자원학회논문집
    • /
    • 제39권7호
    • /
    • pp.605-615
    • /
    • 2006
  • 토양수분의 거동을 파악하기 위해서 설마천 유역의 범륜사 사변에 TDR(Time Domain Reflectometry)을 설치하여 시공간적, 계절적 특성을 파악하였다. 대상유역을 정밀 측량하여 수치지형 모형(Digital Elevation Model)을 구축하고 이를 흐름분배 알고리즘에 적용하여 흐름범위 안에서 역측량을 통해서 측정지점을 선정하여 모니터링 시스템 을 구축하였다. 2003년 11월에 380시간, 2004년 5월 6월에 1037시간 동안의 장기적인 집중 모니터링을 통해 토양수분 자료를 획득하였다. 획득한 토양수분 자료는 지형분석을 통해 상부와 중간지점, 수로지점으로 구분하여 변화 특성을 파악하였다. 지형분석을 통한 흐름특성과 토양수분 실측치의 유의성을 논의하였다. 토양수분은 계절별 강우에 대한 변화 양상은 비슷하나 봄에서 여름으로 가는 시기에는 감쇄 현상이, 가을에서 겨울로 가는 시기에는 충전현상이 일어나는 것을 알 수 있었다.

×Populus albaglandulosa의 수액류속도(樹液流速度) (Effects of Some Factors on the Speed of Sap Movement in the Trunk of ×Populus albaglandulosa)

  • 김정석;선순화;황진성
    • 한국산림과학회지
    • /
    • 제37권1호
    • /
    • pp.31-34
    • /
    • 1978
  • 은수원사시나무 1/1년생(年生), 1/2년생(年生) 및 7/8년생(年生)에 대(對)하여 간(幹)의 수액류속도(樹液流速度)을 관찰(觀察)하였던 바 유속(流速)은 수령간(樹令間)과 포지(圃地)의 토양수분(土壤水分)의 차이(借異)보다는 공중습도(空中濕度)와 착엽성(着葉性)에 가장 크게 영향을 받고 다음은 기온(氣溫)에 영향받고 있음을 볼 수 있었다.

  • PDF

Modeling the effects of excess water on soybean growth in converted paddy field in Japan 1. Predicting groundwater level and soil moisture condition - The case of Biwa lake reclamation area

  • Kato, Chihiro;Nakano, Satoshi;Endo, Akira;Sasaki, Choichi;Shiraiwa, Tatsuhiko
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.315-315
    • /
    • 2017
  • In Japan, more than 80 % of soybean growing area is converted fields and excess water is one of the major problems in soybean production. For example, recent study (Yoshifuji et al., 2016) suggested that in the fields of shallow groundwater level (GWL) (< 1m depth), rising GWL even in a short period (e.g. 1 day) causes inhibition of soybean growth. Thus it becomes more and more important to predict GWL and soil moisture in detail. In addition to conventional surface drainage and underdrain, FOEAS (Farm Oriented Enhancing Aquatic System), which is expected to control GWL in fields adequately, has been developed recently. In this study we attempted to predict GWL and soil moisture condition at the converted field with FOEAS in Biwa lake reclamation area, Shiga prefecture, near the center of the main island of Japan. Two dimensional HYDRUS model (Simuinek et al., 1999) based on common Richards' equation, was used for the calculation of soil water movement. The calculation domain was considered to be 10 and 5 meter in horizontal and vertical direction, respectively, with two layers, i.e. 20cm-thick of plowed layer and underlying subsoil layer. The center of main underdrain (10 cm in diameter) was assumed to be 5 meter from the both ends of the domain and 10-60cm depth from the surface in accordance with the field experiment. The hydraulic parameters of the soil was estimated with the digital soil map in "Soil information web viewer" and Agricultural soil-profile physical properties database, Japan (SolphyJ) (Kato and Nishimura, 2016). Hourly rainfall depth and daily potential evapo-transpiration rate data were given as the upper boundary condition (B.C.). For the bottom B.C., constant upward flux, which meant the inflow flux to the field from outside, was given. Seepage face condition was employed for the surrounding of the underdrain. Initial condition was employed as GWL=60cm. Then we compared the simulated and observed results of volumetric water content at depth of 15cm and GWL. While the model described the variation of GWL well, it tended to overestimate the soil moisture through the growing period. Judging from the field condition, and observed data of soil moisture and GWL, consideration of soil structure (e.g. cracks and clods) in determination of soil hydraulic parameters at the plowed layer may improve the simulation results of soil moisture.

  • PDF

찰진흙개간지의 암반비수에 관한 연구(I) (Studies on Heavy Clay Soil of Tile Drainage)

  • 김시원
    • 한국농공학회지
    • /
    • 제9권2호
    • /
    • pp.1296-1300
    • /
    • 1967
  • This study was made through the utilization of heavy soil taken from the experimental plot of heavy soil in Konkuk University, Changan-dong, Sungdong-ku, Seoul. The soil used in the experiment has the following physical characteristics: 1. The soil is very compact, impervious, and unfit for any plant growth, 2. For improvement of the soil, tile drainage practice has been employed, 3. According to the general theory of tile drainage, it is unnatural that the effect of drainage is actually observed in such a soil. The followings are the results of the experiment: 1. Water moved to crosswise when the plotted soil profile was not broke. In this case the upper sloped part was dry while the bottom part was moistned. The upper part of the tile was also moistned. 2. The crosswise movement of water was not observed in the artificially broken plot of subsoil. However, the water flow from the tile was observed for long period as a result of the increase of soil void, seepage, aeration, and water holding capacity. However, the water flow from the tile in the plot of unbroken subsoil was observed only in short period and soon the flow was stopped. 3. the distance between the tile laid in the heavy soil should not exceed 10m for the efficient drainage. 4. When the pF is 2.5 in the subsoil the moisture content was between 23.97% and 28.20%. However, when the water saturated in the subsoil the moisture content was between 34.30% and 22.10%. Accordingly without the higher pF than 2.5 the water can not be absorbed and therefore the drainage can not be occured.

  • PDF

불포화 토양에서의 PCP의 분포와 이동에 대한 연구 (A study on the Distribution and Transport of Pentachlorophenol(PCP) in Unsaturated Soils)

  • 장병욱;이도섭
    • 한국농공학회지
    • /
    • 제35권4호
    • /
    • pp.47-54
    • /
    • 1993
  • A series of laboratory tests was performed with soil-columns which were compacted with sands and different amount of silt collected from the mid-stream of Gumgang, Korea. A known degree of concentration of PCP(Pentachlorophenol) was poured into the soil-columns and concentration of PCP was monitored and analyzed with time and depth. The results of the study are summarized as follows : 1. PCP was transported into soil along with the movement of moisture under gravitational force. The amount of PCP transported through soil or absorbed by soil varied with soil types. 2. The great amount of PCP was remained at 4~8cm section for the specimen No.2 and at 0~4cm section for the specimen Nos. 3 and 4. Based upon this result it is said that the amount of silt between 30 and 40% may be a threshold value for PCP transported through soil. 3. The amount of PCP remained in the specimen Nos. 2, 3 and 4 is greater than that in the specimen No.1 due to high specific surface of silt and high attraction force between PCP and silt particles in the specimen Nos. 2, 3 and 4. 4. It is said that groundwater under highly permeable soil layer such as specimen No.1 is easily polluted by PCP. That is because the PCP is basically migrated with water under the gravitational force.

  • PDF