• Title/Summary/Keyword: soil moisture model

Search Result 437, Processing Time 0.03 seconds

Simulation of Daily Soil Moisture Content and Reconstruction of Drought Events from the Early 20th Century in Seoul, Korea, using a Hydrological Simulation Model, BROOK

  • Kim, Eun-Shik
    • Journal of Ecology and Environment
    • /
    • v.33 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • To understand day-to-day fluctuations in soil moisture content in Seoul, I simulated daily soil moisture content from 1908 to 2009 using long-term climatic precipitation and temperature data collected at the Surface Synoptic Meteorological Station in Seoul for the last 98 years with a hydrological simulation model, BROOK. The output data set from the BROOK model allowed me to examine day-to-day fluctuations and the severity and duration of droughts in the Seoul area. Although the soil moisture content is highly dependent on the occurrence of precipitation, the pattern of changes in daily soil moisture content was clearly quite different from that of precipitation. Generally, there were several phases in the dynamics of daily soil moisture content. The period from mid-May to late June can be categorized as the initial period of decreasing soil moisture content. With the initiation of the monsoon season in late June, soil moisture content sharply increases until mid-July. From the termination of the rainy season in mid-July, daily soil moisture content decreases again. Highly stochastic events of typhoons from late June to October bring large amount of rain to the Korean peninsula, culminating in late August, and increase the soil moisture content again from late August to early September. From early September until early October, another sharp decrease in soil moisture content was observed. The period from early October to mid-May of the next year can be categorized as a recharging period when soil moisture content shows an increasing trend. It is interesting to note that no statistically significant increase in mean annual soil moisture content in Seoul, Korea was observed over the last 98 years. By simulating daily soil moisture content, I was also able to reconstruct drought phenomena to understand the severity and duration of droughts in Seoul area. During the period from 1908 to 2009, droughts in the years 1913, 1979, 1939, and 2006 were categorized as 'severe' and those in 1988 and 1982 were categorized as 'extreme'. This information provides ecologists with further potential to interpret natural phenomenon, including tree growth and the decline of tree species in Korea.

USING TRMM SATELLITE C BAND DATA TO RETRIEVE SOIL MOISTURE ON THE TffiETAN PLATEAU

  • Chang Tzu-Yin;Liou Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.737-740
    • /
    • 2005
  • Soil moisture, through its dominance in the exchange of energy and moisture between the land and atmosphere, plays a crucial role in influencing atmospheric circulation. To identify the crucial role, it is a common agreement that knowledge of land surface processes and development of remote sensing techniques are of great important scientific issues. This research uses TRMM satellite C band (10.65 GHz) data to retrieve soil moisture on the Tibetan Plateau in Mainland China. Two retrieval schemes that are implemented include the t-(J) model and the R model. The latter one is developed based on a land surface process and radiobrightness (R) model for bare soil and vegetated terrain. Compared with the in situ ground measurements, the soil moisture retrieved from the R model and the t-(J) model with vegetation information obviously appear more accurate than that derived from bare soil model. Retrieved soil moisture contents from the two inversion models, R model and t-(J) model, have a similar trend, but the former appears to be superior in terms of correlation coefficient and bias compared with in situ data. In the future, we will apply the R model with the TRMM 10.65 GHz brightness temperature to monitor long-term soil moisture variation over Tibet Plateau.

  • PDF

RETRIEVAL OF SOIL MOISTURE AND SURFACE ROUGHNESS FROM POLARIMETRIC SAR IMAGES OF VEGETATED SURFACES

  • Oh, Yi-Sok;Yoon, Ji-Hyung
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.33-36
    • /
    • 2008
  • This paper presents soil moisture retrieval from measured polarimetric backscattering coefficients of a vegetated surface. Based on the analysis of the quite complicate first-order radiative transfer scattering model for vegetated surfaces, a simplified scattering model is proposed for an inversion algorithm. Extraction of the surface-scatter component from the total scattering of a vegetation canopy is addressed using the simplified model, and also using the three-component decomposition technique. The backscattering coefficients are measured with a polarimetric L-band scatterometer during two months. At the same time, the biomasses, leaf moisture contents, and soil moisture contents are also measured. Then the measurement data are used to estimate the model parameters for vv-, hh-, and vh-polarizations. The scattering model for tall-grass-covered surfaces is inverted to retrieve the soil moisture content from the measurements using a genetic algorithm. The retrieved soil moisture contents agree quite well with the in-situ measured soil moisture data.

  • PDF

Improving Satellite Derived Soil Moisture Data Using Data Assimilation Methods (자료동화 기법을 이용한 위성영상 추출 토양수분 자료 개선)

  • Hwang, Soonho;Ryu, Jeong Hoon;Kang, Moon Seong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.152-152
    • /
    • 2018
  • Soil moisture is a important factor in hydrologic analysis. So, if we have spatially distributed soil moisture data, it can help to study much research in a various field. Recently, there are a lot of satellite derived soil moisture data, and it can be served through web freely. Especially, NASA (National Aeronautics and Space Administration) launched the Soil Moisture Aperture Passive (SMAP) satellite for mapping global soil moisture on 31 January 2015. SMAP data have many advantages for study, for example, SMAP data has higher spatial resolution than other satellited derived data. However, becuase many satellited derived soil moisture data have a limitation to data accuracy, if we have ancillary materials for improving data accuracy, it can be used. So, in this study, after applying the alogorithm, which is data assimilation methods, applicability of satellite derived soil moisture data was analyzed. Among the various data assimilation methods, in this study, Model Output Statistics (MOS) technique was used for improving satellite derived soil moisture data. Model Output Statistics (MOS) is a type of statistical post-processing, a class of techniques used to improve numerical weather models' ability to forecast by relating model outputs to observational or additional model data.

  • PDF

Irrigation Scheduling with Soil Moisture Simulation Model (토양수분이동모형을 이용한 관개계획)

  • 최진용;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.1
    • /
    • pp.98-106
    • /
    • 1996
  • An irrigation scheduling model, IRIS developed to evaluate irrigation demand and irrigation time for upland crops. For IRlS modeling the soil moisture simulation model, SWATRER was adopted and modified. The developed model, IRIS operated under 5 different soil moisture level that is 20%, 40%, 60%, 80% of available soil moisture and optimum soil moisture level, OSML, which is different about the growing stage and no rainfall condition during growing period. As a result for IRIS simulation, irrigation demand for 5 different soil moisture level was 332.3, 409.8, 569.3, 732.2, 539.3mm, irrigation number was 5, 8, 18, 54, 16 times and irrigation interval during peak time of consumptive use was 20, 13, 6, 2, 6 days respectively. It is appeared that the higher soil moisture level the more irrigation demand and irrigation number and the higher soil moisture level the less irrigation interval.

  • PDF

Analysis and Validation of Soil Moisture Data over the Korean Peninsula Simulated by the VIC Model (VIC 모형을 이용하여 모의된 한반도 토양수분 자료의 분석 및 검증)

  • Cho, Eunsaem;Song, Sung-uk;Yoo, Chulsang
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.52-62
    • /
    • 2017
  • In this study, land surface model was used to simulate the soil moisture of South and North Korea for the past 30 years, and the difference in their variation was analyzed. In addition, satellite observed soil moisture data provided by Soil Moisture CCI was analyzed to evaluate the simulation results of VIC model. For the comparison between the simulated and observed data, the CSEOF analysis was applied to indirectly assess the performance of the VIC model rather than simply comparing soil moisture values. The results of this study are summarized as follows. First, the annual variability of soil moisture showed a similar tendency in both South and North Korea, but it was found that the soil moisture in South Korea was as high as 1%, up to 7%, higher than the soil moisture in North Korea. Secondly, the soil moisture in spring between April to June is similar in South and North Korea, whereas the soil moisture after the rainy season is up to 40% in South Korea, but remains at maximum 32% in North Korea. Third, the overall simulated soil moisture is about 4% smaller than the satellite observed soil moisture, but the degree of increase over the past 30 years is similar to that of satellite observed soil moisture. Finally, a comparison of the CSEOF from the satellite observed soil moisture and the VIC model derived soil moisture showed that the soil moisture from April to June shows a much different pattern from each other. However, in July and October, there was a slight similarity, and it was confirmed that August and September has quite similar patterns.

An Improved Method for Monitoring of Soil Moisture Using NOAA-AVHRR Data

  • Fu, June;Pang, Zhiguo;Xiao, Qianguang
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.195-197
    • /
    • 2003
  • Soil moisture is a crucial variable in research works of hydrology, meteorology and plant sciences. Adequate soil moisture is essential for plant growth; excesses and deficits of soil moisture must be considered in agricultural practices. There are already several remote sensing methods used for monitoring soil moisture, such as thermal inertia, vegetation water-supplying index, crop water stress index and multi-factor regression. In this paper, an improved method has been discussed which is based on the thermal inertia. We analyzed the problems of monitoring soil moisture using satellites at first, and then put forward an simplified method which directly uses land surface temperature differences to measure soil moisture. Also we have taken the influence of vegetation into account, and import NDVI into the model. The method was used in the study of soil moisture in Heilongjiang Province, China, and we draw the conclusion by the experiments that the model can evidently increase the precision of monitoring soil moisture.

  • PDF

Radar Remote Sensing of Soil Moisture and Surface Roughness for Vegetated Surfaces

  • Oh, Yi-Sok
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.427-436
    • /
    • 2008
  • This paper presents radar remote sensing of soil moisture and surface roughness for vegetated surfaces. A precise volume scattering model for a vegetated surface is derived based on the first-order radiative transfer technique. At first, the scattering mechanisms of the scattering model are analyzed for various conditions of the vegetation canopies. Then, the scattering model is simplified step by step for developing an appropriate inversion algorithm. For verifying the scattering model and the inversion algorithm, the polarimetric backscattering coefficients at 1.85 GHz, as well as the ground truth data, of a tall-grass field are measured for various soil moisture conditions. The genetic algorithm is employed in the inversion algorithm for retrieving soil moisture and surface roughness from the radar measurements. It is found that the scattering model agrees quite well with the measurements. It is also found that the retrieved soil moisture and surface roughness parameters agree well with the field-measured ground truth data.

A Study on the Development of a Simulation Model for Predicting Soil Moisture Content and Scheduling Irrigation (토양수분함량 예측 및 계획관개 모의 모형 개발에 관한 연구(I))

  • 김철회;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4279-4295
    • /
    • 1977
  • Two types of model were established in order to product the soil moisture content by which information on irrigation could be obtained. Model-I was to represent the soil moisture depletion and was established based on the concept of water balance in a given soil profile. Model-II was a mathematical model derived from the analysis of soil moisture variation curves which were drawn from the observed data. In establishing the Model-I, the method and procedure to estimate parameters for the determination of the variables such as evapotranspirations, effective rainfalls, and drainage amounts were discussed. Empirical equations representing soil moisture variation curves were derived from the observed data as the Model-II. The procedure for forecasting timing and amounts of irrigation under the given soil moisture content was discussed. The established models were checked by comparing the observed data with those predicted by the model. Obtained results are summarized as follows: 1. As a water balance model of a given soil profile, the soil moisture depletion D, could be represented as the equation(2). 2. Among the various empirical formulae for potential evapotranspiration (Etp), Penman's formula was best fit to the data observed with the evaporation pans and tanks in Suweon area. High degree of positive correlation between Penman's predicted data and observed data with a large evaporation pan was confirmed. and the regression enquation was Y=0.7436X+17.2918, where Y represents evaporation rate from large evaporation pan, in mm/10days, and X represents potential evapotranspiration rate estimated by use of Penman's formula. 3. Evapotranspiration, Et, could be estimated from the potential evapotranspiration, Etp, by introducing the consumptive use coefficient, Kc, which was repre sensed by the following relationship: Kc=Kco$.$Ka+Ks‥‥‥(Eq. 6) where Kco : crop coefficient Ka : coefficient depending on the soil moisture content Ks : correction coefficient a. Crop coefficient. Kco. Crop coefficients of barley, bean, and wheat for each growth stage were found to be dependent on the crop. b. Coefficient depending on the soil moisture content, Ka. The values of Ka for clay loam, sandy loam, and loamy sand revealed a similar tendency to those of Pierce type. c. Correction coefficent, Ks. Following relationships were established to estimate Ks values: Ks=Kc-Kco$.$Ka, where Ks=0 if Kc,=Kco$.$K0$\geq$1.0, otherwise Ks=1-Kco$.$Ka 4. Effective rainfall, Re, was estimated by using following relationships : Re=D, if R-D$\geq$0, otherwise, Re=R 5. The difference between rainfall, R, and the soil moisture depletion D, was taken as drainage amount, Wd. {{{{D= SUM from { {i }=1} to n (Et-Re-I+Wd)}}}} if Wd=0, otherwise, {{{{D= SUM from { {i }=tf} to n (Et-Re-I+Wd)}}}} where tf=2∼3 days. 6. The curves and their corresponding empirical equations for the variation of soil moisture depending on the soil types, soil depths are shown on Fig. 8 (a,b.c,d). The general mathematical model on soil moisture variation depending on seasons, weather, and soil types were as follow: {{{{SMC= SUM ( { C}_{i }Exp( { - lambda }_{i } { t}_{i } )+ { Re}_{i } - { Excess}_{i } )}}}} where SMC : soil moisture content C : constant depending on an initial soil moisture content $\lambda$ : constant depending on season t : time Re : effective rainfall Excess : drainage and excess soil moisture other than drainage. The values of $\lambda$ are shown on Table 1. 7. The timing and amount of irrigation could be predicted by the equation (9-a) and (9-b,c), respectively. 8. Under the given conditions, the model for scheduling irrigation was completed. Fig. 9 show computer flow charts of the model. a. To estimate a potential evapotranspiration, Penman's equation was used if a complete observed meteorological data were available, and Jensen-Haise's equation was used if a forecasted meteorological data were available, However none of the observed or forecasted data were available, the equation (15) was used. b. As an input time data, a crop carlender was used, which was made based on the time when the growth stage of the crop shows it's maximum effective leaf coverage. 9. For the purpose of validation of the models, observed data of soil moiture content under various conditions from May, 1975 to July, 1975 were compared to the data predicted by Model-I and Model-II. Model-I shows the relative error of 4.6 to 14.3 percent which is an acceptable range of error in view of engineering purpose. Model-II shows 3 to 16.7 percent of relative error which is a little larger than the one from the Model-I. 10. Comparing two models, the followings are concluded: Model-I established on the theoretical background can predict with a satisfiable reliability far practical use provided that forecasted meteorological data are available. On the other hand, Model-II was superior to Model-I in it's simplicity, but it needs long period and wide scope of observed data to predict acceptable soil moisture content. Further studies are needed on the Model-II to make it acceptable in practical use.

  • PDF

Estimation of Irrigation Requirements for Red Pepper using Soil Moisture Model with High Resolution Meteorological Data (고해상도 기상자료와 토양수분모형을 이용한 고추의 관개량 산정)

  • Shin, Yong-Hoon;Choi, Jin-Yong;Lee, Seung-Jae;Lee, Sung-Hack
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.31-40
    • /
    • 2017
  • The aim of this study is to estimate net irrigation requirements for red pepper during growing period using soil moisture model. The soil moisture model based on water balance approach simulates soil moisture contents of 4 soil layers in crop root zone considering soil moisture extraction pattern. The LAMP (Land-Atmosphere Modeling Package) high resolution meteorological data provided from National Center for AgroMeteorology (NCAM) was used to simulate soil moisture as the input weather data. Study area for the LAMP data and soil moisture simulation covers $36.92^{\circ}{\sim}37.40^{\circ}$ in latitude and $127.36^{\circ}{\sim}127.94^{\circ}$ in longitude. Soil moisture was monitored using FDR (Frequency Domain Reflectometry) sensors and the data were used to validate the simulation model from May 24 to October 20 in 2016. The results showed spatially detailed soil moisture pattern under different weather conditions and soil texture. Net irrigation requirements were also different by location reflecting the spatially distributed weather condition. The average of the requirements was 470.7 mm and averages about soil texture were 466.8 mm, 482.4 mm, 456.0 mm, 481.7 mm, and 465.6 mm for clay loam, sandy loam, silty clay loam, clay, and sand respectively. This study showed spatial differences of soil moisture and the irrigation requirements of red pepper about spatially uneven weather condition and soil texture. From the results, it was demonstrated that high resolution meteorological data could provide an opportunity of spatially different crop water requirement estimation during the irrigation management.