• Title/Summary/Keyword: soil moisture extraction pattern

Search Result 6, Processing Time 0.017 seconds

Soil Moisture Extraction Characteristics of Cucumber Crop in Protected Cultivation (오이 시설재배지에서의 토양수분 소비특성 분석)

  • Hong, Eun Mi;Choi, Jin-Yong;Nam, Won Ho;Kang, Moon-Seong;Jang, Jeong-Ryel
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.2
    • /
    • pp.37-46
    • /
    • 2014
  • Water for crop growth were supplied by irrigation in protected cultivation and these are accumulated in the soil and utilized for crop evapotranspiration. The study for analyzing soil moisture characteristics is necessary for adequate irrigation water and soil water management in protected cultivation. Soil moisture content, irrigation water quantity and meteorological data were monitored to analyze soil moisture increment and extraction characteristics in terms of soil layers and cucumber crop growth stages. In first cropping period, the total amount of irrigation water was 5.07 mm/day, soil moisture increment was 4.82 mm/day and soil moisture extraction was 5.56 mm/day. In second cropping period, the total amount of irrigation water was 4.82 mm/day, soil moisture increment was 4.65 mm/day and soil moisture extraction was 4.73 mm/day. Soil moisture extraction rate from 0 to 75 cm is 90.3 % in first cropping period and 79.1 % in second cropping period. The majority irrigation water were consumed in root zone, however, about 15 % of soil moisture were losses by infiltration in lower soil layer. Soil moisture extraction and extraction pattern of cucumber crop calculated in this study can be utilized as a basic data for irrigation water management in protected cultivation.

A Study on Root Growth and Soil Moisture Extraction Patten during Growing Period of Upland Crops -Soybean, Redpepper, Sesame- (밭작물의 뿌리성장과 생육시기별 토양수분 소비형태에 관한 연구 - 콩, 고추, 참깨 -)

  • 정하우;박상현;김성준;정영신
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.1
    • /
    • pp.67-75
    • /
    • 1993
  • This study is to analyze both root growth and soil moisture extraction pattern during the growing period of upland crops with respect to soybean, redpepper, sesame. Field and lysimeter tests were conducted under 12 treatments of soil moisture level by the San Cristobal experimental design(1981) and 3 soil type(sand, sandy loam, silty loam) for 4 years('87-'90) at the experimental plot of Rural Development Administration located in Suwon. The results of this study are summarized as follows : 1.For soybean, redpepper and sesame, root growth in dry soil was better than that in wet soil and it could be expressed as a sin function in terms of time. Maximum root depth was about 55cm, 44cm, 40cm respectively. 2.The average soil moisture extraction pattern for soybean, redpepper and sesame were 61.4%, 62.8%, 79.5% for zone l(0-l5cm). 25.5%, 27.1%, 18.3%, for zone 2(15-30cm).11.4%, 9.8%, 2.3% for zone 3(30-45cm), 1.7%, 0.3%, 0.04% for zone 4(45-60cm) respectively. This means that Zone 1 would be the dominant zone in irrigation scheduling. 3.With respect to soybean, the soil moisture extraction pattern(SMEP) was varied somewhat according to the erent maintenance of soil moisture level. The average SMEP for high maintenance of soil moisture was 46%, 29%, 17%, 8%, for middle maintenance of soil moisture was 43%, 29%, 17%, 11 % and for low maintenance of soil moisture was 40%, 28%, 20%, 12%, respectively. 4.With respect to soybean, the soil moisture in the upper layer was distinctly consumed more than that in the lower layer for clay loam soil and the soil moisture of all layers was consumed evenly for sand soil. The SMEP for sandy loam soil showed a middle result compared with the above 2 soil types.

  • PDF

Estimation of Irrigation Requirements for Red Pepper using Soil Moisture Model with High Resolution Meteorological Data (고해상도 기상자료와 토양수분모형을 이용한 고추의 관개량 산정)

  • Shin, Yong-Hoon;Choi, Jin-Yong;Lee, Seung-Jae;Lee, Sung-Hack
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.31-40
    • /
    • 2017
  • The aim of this study is to estimate net irrigation requirements for red pepper during growing period using soil moisture model. The soil moisture model based on water balance approach simulates soil moisture contents of 4 soil layers in crop root zone considering soil moisture extraction pattern. The LAMP (Land-Atmosphere Modeling Package) high resolution meteorological data provided from National Center for AgroMeteorology (NCAM) was used to simulate soil moisture as the input weather data. Study area for the LAMP data and soil moisture simulation covers $36.92^{\circ}{\sim}37.40^{\circ}$ in latitude and $127.36^{\circ}{\sim}127.94^{\circ}$ in longitude. Soil moisture was monitored using FDR (Frequency Domain Reflectometry) sensors and the data were used to validate the simulation model from May 24 to October 20 in 2016. The results showed spatially detailed soil moisture pattern under different weather conditions and soil texture. Net irrigation requirements were also different by location reflecting the spatially distributed weather condition. The average of the requirements was 470.7 mm and averages about soil texture were 466.8 mm, 482.4 mm, 456.0 mm, 481.7 mm, and 465.6 mm for clay loam, sandy loam, silty clay loam, clay, and sand respectively. This study showed spatial differences of soil moisture and the irrigation requirements of red pepper about spatially uneven weather condition and soil texture. From the results, it was demonstrated that high resolution meteorological data could provide an opportunity of spatially different crop water requirement estimation during the irrigation management.

Study on the Water Consumption of Chinese Cabbage by Floating Lysimeter (Floating Lysimeter 에 의한 가을배추의 소비수량 조사연구)

  • 김시원;김선주;김준석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.2
    • /
    • pp.23-29
    • /
    • 1987
  • This study was fulfilled by the floating lysimeter method at the experimental farm of Kon-Kuk University from August to November of 1986 to investigate the amount of evapotranspiration by the growing periods, evapotranspiration ratio, amount of watering per one time, days of intermission, soil moisture extraction pattern and crop coefficient of the Chinese cabbage cultivated in the sandy loam soil at the watering point of pF2.O. The results obtained are summarized as follows: 1.The total evapotranspiration during the growing period was 267.2mm, which was 3. 99mm by daily average, and the maximum evapotranspiration showed in the mid ten days of September with the value of 5.81mm I day. 2.The evapotranspiration ratio by the growing stages increased from the last ten days of September and showed maximum in the beginning of October, and the average evapotranspiration ratio was 1.4. 3.The days of watering intermission at the watering point of pF2.O was 2.4 days, and the average yield per plant was 3,228 g. 4. The soil moisture extraction pattern in the initial stage was 78.9 % in the 1st and 2nd soil layer and 21.1 % in the 3rd and 4th layer, and the mid-season stage, the moisture extraction proportion of the under layer accounted for 38.8 % which showed that the root elongated to the lowest soil layer. 5.The average crop coefficient(Kc) of the tested crop during the growing period was 0.67 by Penman equation and 2.36 by Pan Evaporation equation, which showed high difference by the calculation methods, and the changes of crop coefficient by the growing stages by Penman equation was favorable than those calculated by other met-hods.

  • PDF

Basic Study on the Consumptive Use of Water for Tobacco during the Growing Period (연초생육기간중의 소비수량에 관한 기초적 연구)

  • 김근배;김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.1
    • /
    • pp.62-70
    • /
    • 1985
  • The purpose of this study is to investigate the basic data such the total, the daily maximum, and the peak stage of consumptive use of water and also the soil moisture extraction pattern for irrigation plan of tobacco during the growing period. The plots at which this study was conducted are divided into three fertilization levels of 30g, 60g, and 90g. Each block for three levels is divided as vinyl mulching and irrigation plot, vinyl mulching and nonirrigation plot, and nonmulching and irrigation plot. The results obtained are summarized as follows: 1. The evapotranspiration amount of mulching-irrigation plots are similar to that of mulching-nonirrigation plots. While, the evapotranspiration amount of mulching plots are different obviousely from that of nonmulching plots. Therefore, a significance was recognized between the mulching plots and the nonmulching plots. 2. The amount of evapotranspiration in case of 60g and 90g fertilization level was larger than that of 30g. But the 60g plots and the 90g plots showed little differences. 3. In the total amount of evapotranspiration for each of the experimental plots during the growing period, nonmulching-irrigation plot showed the largest value of 332.9mm, second the mulching-irrigation plot, 284. 9mm, and the mulching-nonirrigation plot, the smallest as 255. 9mm. 4. In the monthly average amount of evapotranspiration for each of the treatment plots, the mulching-irrigation the mulching-nonirrigation, and the nonmulching-irrigation plot showed 3. 6mm, 3. 2mm and 4. 2mm respectively. The daily maximum amount of evapotranspiration showed 5. 1mm, 4. 5mm, and 6.4mm for the mulching-irrigation, the mulching-nonirrigationl, and the nonmulching-irrigation plot respectively. 5. It was confirmed that the higher correlationship exists between the weight of dried leaves and the amount of evapotranspiration, and between the weight of dried leaves and the coefficient of evapotranspiration with the function of logarithms. The coefficient of evapotranspiration have a tendency to increase in proportion to the leaf area index. 6. The maximum coefficient of evapotranspration and the largest leaf area index showed 1. 45 and 5.5 respectively. The stage appeared maximum values was assumed to be before and after flowering. 7. The soil moisture extraction pattern has changed by the depth of root zone for the tobacco's growing. The soil moisture extraction influenced on the 20cm depth of soil after 15 days passed, the 30cm depth after 25 days passed and the whole root zone after 45 days passed from planting. It was shown in the only mulching-irrigation plot after S5days passed from planting that the rate of soil moisture extraction of 20cm layer was larger than that of 10cm layer.

  • PDF

Study on the Evapotranspiration of Crisphead Lettuce by the Weighing Lysimeter (Weighing Lysimeter에 의한 결구상치의 증발산량 조사연구)

  • 김시원;김선주;노희수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.28 no.4
    • /
    • pp.41-48
    • /
    • 1986
  • This study was fulfilled by the weighing lysimeter method at the experimental farm of KonKuk University from April to June of 1986 to investgate the amount of evapotranspiration ( ET-lettuec )by the growing periods, evapotranspiration ratio, amount of watering per one time, days of intermission and soil moisture extraction pattern of the crisphead lettuce cultivated in the clay loam soil by different watering points of pFl.7, pF2.O, pF2.7. The results obtained are summar ized as follows : 1.The total evapotranspiration(ETlettuce) of the pFl.7 treatment plot was 358,9mm., 314.9mm in the pF2.O plot and 281.8mm in the pF2.7 plot, therefore the total ETlettuec increased with the difference of 33mm-44mm by the decrease of watering point. 2.The daily maximum ETlettuce by the watering points was 7.66mm, 6:54mm, 5.98mm, respectively in the last ten days of May, and the mean daily ETlettuce during the growing season by the watering points of pFl.7, pF2.O and pF2.7 was 5.44mm(384.5g), 4.77mm(337.2g) and 4.27mm(301.8g), respectively. 3.The evapotranspiration ratio showed maximum value in the middle of May which was the beginning of mid-season stage, and the mean evapotranspiration ratio during the total growing period was 1A7, 1.29, 1.15 by the watering points. 4.The days of watering intermission by the watering points of pFl.7, pF2.O and pF2.7 was 1.0day, 2.9days and 12.Sdays, respectively. 5.The yield of the crisphead lettuce by the watering treatments showed very high significance, and the pF2.O was confirmed as a optimum watering point. 6.The soil moisture extraction pattern(SMEP) of the pF2.0 treatment plot in the initial stage was 85.6% in the 1st and 2nd soil layer and 14.4% in the 3rd and 4th layer, and in the midseason stage, the moisture extraction proportion of the under layer accounted for 34.7%which showed that the root elongated to the lowest soil layer, and there was no difference of the SMEP between the mid-season and late-season stage. 7.The correlation coefficient between the ETlettuce and yield of lettuce by the three watering points was.739, which showed the significance of 5%.

  • PDF