• 제목/요약/키워드: soil moisture data assimilation

검색결과 30건 처리시간 0.023초

Sentinel-1A/B SAR와 토양수분자료동화기법을 이용한 고해상도 토양수분 산정 (Estimation of High-Resolution Soil Moisture Using Sentinel-1A/B SAR and Soil Moisture Data Assimilation Scheme)

  • 김상우;이태화;천범석;정영훈;장원석;서찬양;신용철
    • 한국농공학회논문집
    • /
    • 제62권6호
    • /
    • pp.11-20
    • /
    • 2020
  • We estimated the spatio-temporally distributed soil moisture using Sentinel-1A/B SAR (Synthetic Aperture Radar) sensor images and soil moisture data assimilation technique in South Korea. Soil moisture data assimilation technique can extract the hydraulic parameters of soils using observed soil moisture and GA (Genetic Algorithm). The SWAP (Soil Water Atmosphere Plant) model associated with a soil moisture assimilation technique simulates the soil moisture using the soil hydraulic parameters and meteorological data as input data. The soil moisture based on Sentinel-1A/B was validated and evaluated using the pearson correlation and RMSE (Root Mean Square Error) analysis between estimated soil moisture and TDR soil moisture. The soil moisture data assimilation technique derived the soil hydraulic parameters using Sentinel-1A/B based soil moisture images, ASOS (Automated Synoptic Observing System) weather data and TRMM (Tropical Rainfall Measuring Mission)/GPM (Global Precipitation Measurement) rainfall data. The derived soil hydrological parameters as the input data to SWAP were used to simulate the daily soil moisture values at the spatial domain from 2001 to 2018 using the TRMM/GPM satellite rainfall data. Overall, the simulated soil moisture estimates matched well with the TDR measurements and Sentinel-1A/B based soil moisture under various land surface conditions (bare soil, crop, forest, and urban).

자료동화 기법을 이용한 위성영상 추출 토양수분 자료 개선 (Improving Satellite Derived Soil Moisture Data Using Data Assimilation Methods)

  • Hwang, Soonho;Ryu, Jeong Hoon;Kang, Moon Seong
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.152-152
    • /
    • 2018
  • Soil moisture is a important factor in hydrologic analysis. So, if we have spatially distributed soil moisture data, it can help to study much research in a various field. Recently, there are a lot of satellite derived soil moisture data, and it can be served through web freely. Especially, NASA (National Aeronautics and Space Administration) launched the Soil Moisture Aperture Passive (SMAP) satellite for mapping global soil moisture on 31 January 2015. SMAP data have many advantages for study, for example, SMAP data has higher spatial resolution than other satellited derived data. However, becuase many satellited derived soil moisture data have a limitation to data accuracy, if we have ancillary materials for improving data accuracy, it can be used. So, in this study, after applying the alogorithm, which is data assimilation methods, applicability of satellite derived soil moisture data was analyzed. Among the various data assimilation methods, in this study, Model Output Statistics (MOS) technique was used for improving satellite derived soil moisture data. Model Output Statistics (MOS) is a type of statistical post-processing, a class of techniques used to improve numerical weather models' ability to forecast by relating model outputs to observational or additional model data.

  • PDF

Improving streamflow prediction with assimilating the SMAP soil moisture data in WRF-Hydro

  • Kim, Yeri;Kim, Yeonjoo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.205-205
    • /
    • 2021
  • Surface soil moisture, which governs the partitioning of precipitation into infiltration and runoff, plays an important role in the hydrological cycle. The assimilation of satellite soil moisture retrievals into a land surface model or hydrological model has been shown to improve the predictive skill of hydrological variables. This study aims to improve streamflow prediction with Weather Research and Forecasting model-Hydrological modeling system (WRF-Hydro) by assimilating Soil Moisture Active and Passive (SMAP) data at 3 km and analyze its impacts on hydrological components. We applied Cumulative Distribution Function (CDF) technique to remove the bias of SMAP data and assimilate SMAP data (April to July 2015-2019) into WRF-Hydro by using an Ensemble Kalman Filter (EnKF) with a total 12 ensembles. Daily inflow and soil moisture estimates of major dams (Soyanggang, Chungju, Sumjin dam) of South Korea were evaluated. We investigated how hydrologic variables such as runoff, evaporation and soil moisture were better simulated with the data assimilation than without the data assimilation. The result shows that the correlation coefficient of topsoil moisture can be improved, however a change of dam inflow was not outstanding. It may attribute to the fact that soil moisture memory and the respective memory of runoff play on different time scales. These findings demonstrate that the assimilation of satellite soil moisture retrievals can improve the predictive skill of hydrological variables for a better understanding of the water cycle.

  • PDF

SMAP 토양수분 이미지를 이용한 농업가뭄 평가 기법 개발 (Development of Agricultural Drought Assessment Approach Using SMAP Soil Moisture Footprints)

  • 신용철;이태화;김상우;이현우;최경숙;김종건;이기하
    • 한국농공학회논문집
    • /
    • 제59권1호
    • /
    • pp.57-70
    • /
    • 2017
  • In this study, we evaluated daily root zone soil moisture dynamics and agricultural drought using a near-surface soil moisture data assimilation scheme with Soil Moisture Active & Passive (SMAP, $3km{\times}3km$) soil moisture footprints under different hydro-climate conditions. Satellite-based LANDSAT and MODIS image footprints were converted to spatially-distributed soil moisture estimates based on the regression model, and the converted soil moisture distributions were used for assessing uncertainties and applicability of SMAP data at fields. In order to overcome drawbacks of the discontinuity of SMAP data at the spatio-temporal scales, the data assimilation was applied to SMAP for estimating daily soil moisture dynamics at the spatial domain. Then, daily soil moisture values were used to estimate weekly agricultural drought based on the Soil Moisture Deficit Index (SMDI). The Yongdam-dam and Soyan river-dam watersheds were selected for validating our proposed approach. As a results, the MODIS/SMAP soil moisture values were relatively overestimated compared to those of the TDR-based measurements and LANDSAT data. When we applied the data assimilation scheme to SMAP, uncertainties were highly reduced compared to the TDR measurements. The estimated daily root zone soil moisture dynamics and agricultural drought from SMAP showed the variability at the sptio-temporal scales indicating that soil moisture values are influenced by not only the precipitation, but also the land surface characteristics. These findings can be useful for establishing efficient water management plans in hydrology and agricultural drought.

기상청 GloSea의 위성관측 기반 토양수분(SMAP) 동화: 예비 실험 분석 (Assimilation of Satellite-Based Soil Moisture (SMAP) in KMA GloSea6: The Results of the First Preliminary Experiment)

  • 지희숙;황승언;이조한;현유경;류영;부경온
    • 대기
    • /
    • 제32권4호
    • /
    • pp.395-409
    • /
    • 2022
  • A new soil moisture initialization scheme is applied to the Korea Meteorological Administration (KMA) Global Seasonal forecasting system version 6 (GloSea6). It is designed to ingest the microwave soil moisture retrievals from Soil Moisture Active Passive (SMAP) radiometer using the Local Ensemble Transform Kalman Filter (LETKF). In this technical note, we describe the procedure of the newly-adopted initialization scheme, the change of soil moisture states by assimilation, and the forecast skill differences for the surface temperature and precipitation by GloSea6 simulation from two preliminary experiments. Based on a 4-year analysis experiment, the soil moisture from the land-surface model of current operational GloSea6 is found to be drier generally comparing to SMAP observation. LETKF data assimilation shows a tendency toward being wet globally, especially in arid area such as deserts and Tibetan Plateau. Also, it increases soil moisture analysis increments in most soil levels of wetness in land than current operation. The other experiment of GloSea6 forecast with application of the new initialization system for the heat wave case in 2020 summer shows that the memory of soil moisture anomalies obtained by the new initialization system is persistent throughout the entire forecast period of three months. However, averaged forecast improvements are not substantial and mixed over Eurasia during the period of forecast: forecast skill for the precipitation improved slightly but for the surface air temperature rather degraded. Our preliminary results suggest that additional elaborate developments in the soil moisture initialization are still required to improve overall forecast skills.

원격탐사자료를 이용한 시⋅공간적으로 분포되어 있는 토양수분산정 및 가뭄평가:(I) 토양수분 (Soil Moisture Estimation and Drought Assessment at the Spatio-Temporal Scales using Remotely Sensed Data: (I) Soil Moisture)

  • 신용철;최경숙;정영훈;양재의;임경재
    • 한국물환경학회지
    • /
    • 제32권1호
    • /
    • pp.60-69
    • /
    • 2016
  • In this study, we estimated root zone soil moisture dynamics using remotely sensed (RS) data. A soil moisture data assimilation scheme was used to derive the soil and root parameters from MODerate resolution Imaging Spectroradiometer (MODIS) data. Based on the estimated soil/root parameters and weather forcings, soil moisture dynamics were simulated at spatio-temporal scales based on a hydrological model. For calibration/validation, the Little Washita (LW13) in Oklahoma and Chungmi-cheon/Seolma-cheon sites were selected. The derived water retention curves matched the observations at LW 13. Also, the simulated soil moisture dynamics at these sites was in agreement with the Time Domain Reflectrometry (TDR)-based measurements. To test the applicability of this approach at ungauged regions, the soil/root parameters at the pixel where the Seolma-cheon site is located were derived from the calibrated MODIS-based (Chungmi-cheon) soil moisture data. Then, the simulated soil moisture was validated using the measurements at the Seolma-cheon site. The results were slightly overestimated compared to the measurements, but these findings support the applicability of this proposed approach in ungauged regions with predictable uncertainties. These findings showed the potential of this approach in Korea. Thus, this proposed approach can be used to assess root zone soil moisture dynamics at spatio-temporal scales across Korea, which comprises mountainous regions with dense forest.

수리 모형을 이용한 Korea Land Data Assimilation System (KLDAS) 자료의 수문자료에 대한 영향력 분석 (Interactions between Soil Moisture and Weather Prediction in Rainfall-Runoff Application : Korea Land Data Assimilation System(KLDAS))

  • 정용;최민하
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2011년도 정기 학술발표대회
    • /
    • pp.172-172
    • /
    • 2011
  • The interaction between land surface and atmosphere is essentially affected by hydrometeorological variables including soil moisture. Accurate estimation of soil moisture at spatial and temporal scales is crucial to better understand its roles to the weather systems. The KLDAS(Korea Land Data Assimilation System) is a regional, specifically Korea peninsula land surface information systems. As other prior land data assimilation systems, this can provide initial soil field information which can be used in atmospheric simulations. For this study, as an enabling high-resolution tool, weather research and forecasting(WRF-ARW) model is applied to produce precipitation data using GFS(Global Forecast System) with GFS embedded and KLDAS soil moisture information as initialization data. WRF-ARW generates precipitation data for a specific region using different parameters in physics options. The produced precipitation data will be employed for simulations of Hydrological Models such as HEC(Hydrologic Engineering Center) - HMS(Hydrologic Modeling System) as predefined input data for selected regional water responses. The purpose of this study is to show the impact of a hydrometeorological variable such as soil moisture in KLDAS on hydrological consequences in Korea peninsula. The study region, Chongmi River Basin, is located in the center of Korea Peninsular. This has 60.8Km river length and 17.01% slope. This region mostly consists of farming field however the chosen study area placed in mountainous area. The length of river basin perimeter is 185Km and the average width of river is 9.53 meter with 676 meter highest elevation in this region. We have four different observation locations : Sulsung, Taepyung, Samjook, and Sangkeug observatoriesn, This watershed is selected as a tentative research location and continuously studied for getting hydrological effects from land surface information. Simulations for a real regional storm case(June 17~ June 25, 2006) are executed. WRF-ARW for this case study used WSM6 as a micro physics, Kain-Fritcsch Scheme for cumulus scheme, and YSU scheme for planetary boundary layer. The results of WRF simulations generate excellent precipitation data in terms of peak precipitation and date, and the pattern of daily precipitation for four locations. For Sankeug observatory, WRF overestimated precipitation approximately 100 mm/day on July 17, 2006. Taepyung and Samjook display that WRF produced either with KLDAS or with GFS embedded initial soil moisture data higher precipitation amounts compared to observation. Results and discussions in detail on accuracy of prediction using formerly mentioned manners are going to be presented in 2011 Annual Conference of the Korean Society of Hazard Mitigation.

  • PDF

A Numerical Study of Mesoscale Model Initialization with Data Assimilation

  • Min, Ki-Hong
    • 한국지구과학회지
    • /
    • 제35권5호
    • /
    • pp.342-353
    • /
    • 2014
  • Data for model analysis derived from the finite volume (fv) GCM (Goddard Earth Observing System Ver. 4, GEOS-4) and the Land Data Assimilation System (LDAS) have been utilized in a mesoscale model. These data are tested to provide initial conditions and lateral boundary forcings to the Purdue Mesoscale Model (PMM) for a case study of the Midwestern flood that took place from 21-23 May 1998. The simulated results with fvGCM and LDAS soil moisture and temperature data are compared with that of ECMWF reanalysis. The initial conditions of the land surface provided by fvGCM/LDAS show significant differences in both soil moisture and ground temperature when compared to ECMWF control run, which results in a much different atmospheric state in the Planetary Boundary Layer (PBL). The simulation result shows that significant changes to the forecasted weather system occur due to the surface initial conditions, especially for the precipitation and temperature over the land. In comparing precipitation, moisture budgets, and surface energy, not only do the intensity and the location of precipitation over the Midwestern U.S. coincide better when running fvGCM/LDAS, but also the temperature forecast agrees better when compared to ECMWF reanalysis data. However, the precipitation over the Rocky Mountains is too large due to the cumulus parameterization scheme used in the PMM. The RMS errors and biases of fvGCM/LDAS are smaller than the control run and show statistical significance supporting the conclusion that the use of LDAS improves the precipitation and temperature forecast in the case of the Midwestern flood. The same method can be applied to Korea and simulations will be carried out as more LDAS data becomes available.

자료동화 토양수분 데이터를 활용한 동아시아지역 수동형 위성 토양수분 데이터 보정: SMOS (MIRAS), GCOM-W1 (AMSR2) 위성 및 GLDAS 데이터 활용 (Revising Passive Satellite-based Soil Moisture Retrievals over East Asia Using SMOS (MIRAS) and GCOM-W1 (AMSR2) Satellite and GLDAS Dataset)

  • 김형록;김성균;정재환;신인철;신진호;최민하
    • 한국습지학회지
    • /
    • 제18권2호
    • /
    • pp.132-147
    • /
    • 2016
  • 동아시아 지역의 위성 토양수분 데이터 활용을 위해 Soil Moisture Ocean Salinity (SMOS) 위성에 탑재된 Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) 센서와 Global Change Observation Mission-Water (GCOM-W1) 위성에 탑재된 Advanced Microwave Scanning Radiometer 2 (AMSR2) 센서 기반 토양수분 데이터를 자료동화 데이터인 Global Land Data Assimilation System (GLDAS)를 기준 값으로 Cumulative Distribution Function (CDF) 기법과 회귀식을 활용하여 보정하는 연구를 수행하였다. 동아시아 지역에서 발생하는 전파간섭의 영향을 고려하여 토양수분 산출에 적합하다고 판단되는 Radio Frequency Interference (RFI), Data Quality indeX (DQX) 한계값과, 합성일수를 제시하였다. 보완된 위성 토양수분 데이터를 지점 토양수분 데이터와 비교한 결과 상관계수가 평균 27%, 11% 증가하였고, Root Mean Square Deviation (RMSD, 평균제곱근 편차)는 평균 61%, 57% 감소하였다. 추가적으로, 보정된 위성데이터를 GLDAS 토양수분 데이터와 비교했을 때, 보정된 MIRAS 및 AMSR2 데이터는 한반도의 80% 및 90%의 지역에서 상관계수가 증가하였으며, 한반도 전역에서 RMSD가 감소하였다. 본 연구를 통해 향후 MIRAS 및 AMSR2 위성 데이터를 융합하여 각 위성의 토양수분 데이터를 보완 할 수 있는 가능성을 제시하였다.

원격탐사자료를 이용한 시⋅공간적으로 분포되어 있는 토양수분산정 및 가뭄평가: (II) 가뭄 (Soil Moisture Estimation and Drought Assessment at the Spatio-Temporal Scales using Remotely Sensed Data: (II) Drought)

  • 신용철;최경숙;정영훈;양재의;임경재
    • 한국물환경학회지
    • /
    • 제32권1호
    • /
    • pp.70-79
    • /
    • 2016
  • Based on the soil moisture data assimilation suggested in the first paper (I), we estimated root zone soil moisture and evaluated drought severity using remotely sensed (RS) data. We tested the impacts of various spatial resolutions on soil moisture variations, and the model outputs showed that resolutions of more than 2-3 km resulted in over-/under-estimation of soil moisture values. Thus, we derived the 2 km resolution-scaled soil moisture dynamics and assessed the drought severity at the study sites (Chungmi-cheon sites 1 and 2) based on the estimated soil/root parameters and weather forcings. The drought indices at the sites were affected mainly by precipitation during the spring season, while both the precipitation and land surface characteristics influence the spatial distribution of drought during the rainy season. Also, the drought severity showed a periodic cycle, but additional research on drought cycles should be conducted using long-term historical data. Our proposed approach enabled estimation of daily root zone soil moisture dynamics and evaluation of drought severity at various spatial scales using MODIS data. Thus, this approach will facilitate efficient management of water resources.