• 제목/요약/키워드: soil microorganism

검색결과 414건 처리시간 0.032초

미생물 고결토의 공학적 특성 연구 (A Study on the Properties of Microbial Cementation Soil for Engineering Applicability)

  • 오종신;황성원;강희복;강권수;김종렬
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1332-1343
    • /
    • 2008
  • The purpose of this study was to investigate the feasibility of using sedimentation calcium carbonate production based on microorganism activities in the strength manifestation of various soil conditions including ground. For analysis and comparison of microbial cementation soil's strength, unconfined compression test was executed by each content of soil(S), water(W), microorganism(B), microorganism and deposit (BF), microorganism, admixture and deposit(BCF) at specimen. The result, the strength of SB(soil+microorganism) and SBF(soil+microorganism+deposit) increased about 8%, 15% than SW(soil+water). Also, initial strength increased. But the strength of SBC(soil+microorganism+admixture) and SBCF(soil+microorganism+deposit+admixture) increased about 71%, 115% than SW(soil+water). The results of the SEM analysis, leading to the formation of an adhesive substance layers at the surface and resulting in firm particle configuration. The XRD examination of the sediment resulting from the reaction between the microorganism and the deposit control agent confirmed the presence of a type of calcium carbonate ($CaCo_3$) vaterite, which affects soil strength formation, as well as sodium silicate, silicides and so forth. This indicates that microorganism plays an important role in the production of carbonate ($CaCo_3$), sodium silicate and silicides. It affects to revelation of ground strength.

  • PDF

사질토양에서의 과산화수소 및 미생물에 의한 Benzene의 흡착 및 분해 (Sorption and Degradation of Benzene by Hydrogen Peroxide and Microorganism in a Sandy Soil)

  • 백두성;박춘화;김동주
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2000년도 창립총회 및 춘계학술발표회
    • /
    • pp.101-107
    • /
    • 2000
  • Column tests using KCl and Benzene as tracers were conducted for four different cases: 1) no hydrogen peroxide and no microorganism; 2) hydrogen peroxide only; 3) microorganism only; 4) hydrogen and microorganism to investigate the sorption and degradation characteristics of Benzene. The observed BTCs of KCl and Benzene in all cases showed that the arrival times of the peaks of both tracers coincided well but the peak concentration of Benzene was much lower than that of KCl. This result reveals that a predominant process affecting the transport of Benzene in a sandy soil is an irreversible sorption and/or degradation rather than retardation. Decay of Benzene through sorption and degradation increased with the addition of hydrogen peroxide and/or microorganism. Dissolved oxygen decreased with the increase of Benzene in all cases indicating that Benzene was degraded by dissolved oxygen. For BTCs with the addition of microorganisms (case 3 and case 4), microorganism showed much lower concentrations compared to the initial levels and an increasing tendency with time although concentrations of Benzene returned to zero, indicating a possible retardation of microorganism due to reversible and irreversible sorption to the particle surfaces.

  • PDF

미생물혼합제제 처리가 토양의 미생물상과 화학적 특성 및 시설 채소 생육에 미치는 영향 (Effect of Microorganism Mixture Application on the Microflora and the Chemical Properties of Soil and the Growth of Vegetables in Greenhouse)

  • 류일환;정수지;한성수
    • 한국환경농학회지
    • /
    • 제31권4호
    • /
    • pp.368-374
    • /
    • 2012
  • BACKGROUND: The urgency of feeding the world's growing population while combating soil pollution, salinization and desertification requires suitable biotechnology not only to improve crop productivity but also to improve soil health through interactions of soil nutrient and soil microorganism. Interest in the utilization of microbial fertilizer has increased. A principle of nature farming is to produce abundant and healthy crops without using chemical fertilizer and pesticides, and without interrupting the natural ecosystem. Beneficial microorganisms may provide supplemental nutrients in the soil, promote crop growth, and enhance plant resistance against pathogenic microorganisms. We mixed beneficial microorganisms such as Bacillus sp. Han-5 with anti-fungal activities, Trichoderma harziaum, Trichoderma longibrachiatum with organic material degrading activity, Actinomycetes bovis with antibiotic production and Pseudomonas sp. with nitrogen fixation. This study was carried out to investigate the mixtures on the soil microflora and soil chemical properties and the effect on the growth of lettuce and cucumber under greenhouse conditions. METHODS AND RESULTS: The microbial mixtures were used with each of organic fertilizer, swine manure and organic+swine manure and compared in regard to changes in soil chemical properties, soil microflora properties and crop growth. At 50 days after the treatment of microorganism mixtures, the pH improved from 5.8 to 6.3, and the EC, $NO_3$-Na and K decreased by 52.4%, 60.5% and 29.3%, respectively. The available $P_2O_5$ and $SiO_2$ increased by 25.9% and 21.2%, respectively. Otherwise, the population density of fluorescent Pseudomonas sp. was accelerated and the growth of vegetables increased. Moreover, the population density of E. coli and Fusarium sp., decreased remarkably. The ratio of bacteria to fungi (B/F) and the ratio of Actinomycetes bovis to fungi (A/F) increased 2.3 (from 272.2 to 624.4) and 1.7 times (from 38.3 to 64), respectively. Furthermore, the growth and yield of cucumber and lettuce significantly increased by the treatment of microorganism mixtures. CONCLUSION(S): These results suggest that the treatment of microorganism mixtures improved the chemical properties and the microflora of soil and the crop growth. Therefore, it is concluded that the microorganism mixtures could be good alternative soil amendments to restore soil nutrients and soil microflora.

동전기-생물학적복원기술과 계면활성제를 이용한 phenanthrene 오염토양의 정화

  • 김상준;박지연;이유진;양지원
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.186-190
    • /
    • 2004
  • The electrokinetic bioremediation employing electrolyte circulation method was carried out for the cleanup of phenanthrene-contaminated kaolinite, and microorganism used in the biodegradation of phenanthrene was Sphingomonas sp. 3Y. The electrolyte circulation method supplied ionic nutrientsand the microorganism into soil, and inhibited the significant pH change of soil by increasing the soil buffering capacity by providing phosphate buffer compounds. When the remediation process was conducted without surfactant, the removal efficiency of phenanthrene, at the initial concentration of 200 ppm, was 69% for only 7 days. Higher microbial population and lower phenanthrene concentration were observed in the anode and middle regions of soil specimen than in the cathode region. The higher density of microorganism was because the microbial movement was in the direction of the anode part due to the negative surface charge. When Triton X-100 and APG of 20 g/1 were used to improve the bioavailability of phenanthrene strongly adsorbed onto soil surface, about 90 and 39% of phenanthrene removal were obtained. Consequently, it was confirmed that the microorganism preferred APC to phenanthrene as carbon source and so the removal efficiency with APG decreased less than that without APG.

  • PDF

Effect of microorganism on engineering properties of cohesive soils

  • Yasodian, Sheela Evangeline;Dutta, Rakesh Kumar;Mathew, Lea;Anima, T.M.;Seena, S.B.
    • Geomechanics and Engineering
    • /
    • 제4권2호
    • /
    • pp.135-150
    • /
    • 2012
  • This paper presents the study of the effect of microorganism Bacillus pasteurii on the properties such as Atterbergs' limit and unconfined compressive strength of cohesive soils. The results of this study reveal that the liquid limit and plasticity index for all clay soils decreased and the unconfined compressive strength increased. Decrease in plasticity index is very high for Kuttanad clay followed by bentonite and laterite. The unconfined compressive strength increased for all the soils. The increase was high for Kuttanad soil and low for laterite soil. After 24 h of treatment the improvement in the soil properties is comparatively less. Besides the specific bacteria selected Bacillus pasteurii, other microorganisms may also be taking part in calcite precipitation thereby causing soil cementation. But the naturally present microorganisms alone cannot work on the calcite precipitation.

장기간 호밀을 풋거름작물로 시용한 유기농 토양의 생물학적 특징 (Biological Characteristics of Organic Soil applying Rye (Secale cereal L.) as Green Manure for the Long Term)

  • 백계령;이계준;김태영;지삼녀;김창석;이형복;이은경;송재경
    • 한국유기농업학회지
    • /
    • 제26권3호
    • /
    • pp.427-437
    • /
    • 2018
  • In this study, microorganism community characteristics of organic managed soil which applied rye (Secale cereal L.) as green manure for 25 years, were determined. The chemical properties of organic soil showed high level of organic matter and available $P_2O_5$, while the level of exchangeable cation was low. The analysis of dehydrogenase activity and carbon source utilization indicated that the values in on organic soil were significantly higher than those of the control. It suggested that the microorganism community of organic soil had high microorganism activity, compared to the control. In addition, when the 16S rRNA gene-targeted NGS (Next generation sequencing) analysis was conducted to estimate the class of bacterial community, the class level of bacterial taxon composition on organic soil showed higher portion of Sphingobacteriia, Acidobacteriia, Gammaproteobacteria, Solibacteres and Planctomycetia. By base on the results of various reports in which organic managed soil had high portion of Acidobacteriia and Planctomycetia, the characteristic of taxon composition in organic soil, which showed the high percentages of Ktedonobacteria, Sphingobacteriia, Acidobacteriia and Gammaproteobacteria, was resulted from the application of rye as a green manure for the long term. However, further researches were needed because the crop effect was not considered in this study.

Evaluation on the implications of microbial survival to the performance of an urban stormwater tree-box filter

  • Geronimo, Franz Kevin;Reyes, Nash Jett;Choi, Hyeseon;Guerra, Heidi;Jeon, Minsu;Kim, Lee-Hyung
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.128-128
    • /
    • 2021
  • Most of the studies about stormwater low impact development technologies used generalized observations without fully understanding the mechanisms affecting the whole performance of the systems from catchment to the facility itself. At present, these LID technologies have been treated as black box due to fluctuating flow and environmental conditions affecting its operation and treatment performance. As such, the implications of microbial community to the overall performance of the tree-box filter were investigated in this study. Summer season was found to be the most suitable season for microorganism growth since more microorganism were found during this season. Least microorganism count was found in spring because of the plant growth during this season since plant penology influences the seasonal dynamics of soil microorganisms. Litterfall during fall season might have affected the microorganism count during winter since, during this season, the compositional variety of soil organic matter changes affecting growth of soil microbial communities. Microbial analyses of sediment samples collected in the system revealed that the most dominant microorganism phylum is Proteobacteria in all the seasons in both inlet and outlet comprising 37% to 47% of the total microorganism count. Proteobacteria was followed by Acidobacteria, Actinobacteria and Chloroflexi which comprises 6% to 20%, 9% to 20% and 2% to 27%, respectively of the total microorganism count for each season. These findings were useful in optimizing the design and performance of tree box filters considering physical, chemical and biological pollutant removal mechanisms.

  • PDF

산성비가 토양미생물에 미치는 영향 (Effect of Acid Rain in Soil Microorganism)

  • 김갑정;임진아;박성주;문형태;박경량;이인수
    • 생명과학회지
    • /
    • 제8권3호
    • /
    • pp.299-304
    • /
    • 1998
  • In order to clarify the effects of acid rain on soil microorganisms, the inpact of acid to soil microorganisms was survyed for 14 weeks using soil microcosms from industrial site A and B, Gaejok mountain, and Daechong lake in Taejeon area. The acid tolerant-microorganisms in natural soil, using culturing method were counted to be 5.8 - $8.0{\times}10^6$CFU/g soil. The number of microorganisms using ATP-biomass analysis for natural soil samples were also analyzed and 2.2 - $2.6{\times}10^9$ cell/g soil in industrial site A and B, Gaejok mountain, and Daechong lake were determined. In soil samples, which were treated with artificial acid rain, the number of acid tolerant microorganisms were counted 2.9 - $5.8{\times}10^5$ and 2.8 - $7.5{\times}10^8$, respectively. Therefore, we conformed that the numver of soil microorganisms were influenced by acid rain. Also, long term acid tolerant microorganisms were identified as Rhodotorula sp. and Pseudomonas sp.

  • PDF

질소 기아현상에 관한 반론적 연구 (Influence of fresh rice straw application on growth characteristics of tobacco(Nicotiana tabacum L.))

  • 이부경
    • 한국연초학회지
    • /
    • 제12권2호
    • /
    • pp.85-90
    • /
    • 1990
  • Pot experiment was conducted to find out the effect of decomposing degree of rice straw on growth characteristics of flue-cured tobacco, NC82. Tobacco growth was hindered by fresh straw of rice application. Generally, it was known that if organic matter of high Carbon/Nitrogen ratio had applied in soil, there was temporary nitrogen deficiency in plant caused by soil microorganism utilized nitrogen contained organic matter. In pot experiment, it was supposed that tobacco growth hindered by fresh straw of rice application was not nitrogen deficiency by soil microorganism, but gas toxicity by fresh straw of rice application.

  • PDF

사질토양에서의 과산화수소 및 미생물에 의한 Benzene의 이동 및 분해특성 (Transport and Degradation of Benzene affected by Hydrogen Peroxide and Microorganism in a Sandy Soil)

  • 백두성;박춘화;김동주;김희성;이한웅;박용근
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제6권2호
    • /
    • pp.49-56
    • /
    • 2001
  • 방향족 탄화수소계 화합물중 하나인 benzene은 대수층내에서 물리, 화학, 생물학적 작용에 의하여 분해될 수 있다. 본 연구의 목적은 주상실험을 통하여 세 가지 서로 다른 형태의 분해를 분석하는 것이다. 사질토양에서 benzene의 이동특성을 고찰하기 위하여 KCl및 benzene을 추적자로 사용한 서로 다른 네 가지 경우 (case 1: 과산화수소수와 미생물을 모두 적용하지 않은 경우, case 2: 과산화수소만, case 3: 미생물만, case 4: 과산화수소와 미생물을 모두 적용)의 주상실험이 수행되었다. 모든 경우의 주상실험에서 도출된 KCl 및 benzene의 파과곡선에서 첨두농도의 도달시간은 거의 일치하였고 benzene의 첨두농도가 KCl의 값보다 매우 낮았다. 이 결과로부터 benzene의 운송에서 가장 큰 영향을 미치는 것은 지연현상이 아닌 비가역 흡착 및 분해에 의한 감쇄작용임을 알 수 있었다. 흡착 및 분해에 의한 benzene의 감쇄작용은 과산화수소 및 미생물을 첨가하였을 때 증가하였다. 모든 경우의 주상실험에서 용존산소는 benzene의 농도가 증가할수록 감소하였으며 이것은 bengene의 분해에 의하여 용존산소가 소모되었음을 의미한다. 미생물을 첨가한 주상실험 결과 (case 3과 case 4) 침출수에서의 미생물의 농도는 초기 주입농도보다 매우 낮았고, benzene이 파과한 후에도 시간이 지남에 따라 증가하였으며 이것은 토양 표면으로의 가역 및 비가역 흡착에 의한 미생물의 지연현상에 기인한 것이라고 사료된다.

  • PDF