• Title/Summary/Keyword: soil materials

Search Result 2,191, Processing Time 0.027 seconds

A Study on the Recycling of Coal Ash as Structural Backfill materials (구조물 뒷채움재로서의 석탄회 활용에 관한 연구)

  • 여유현
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.74-79
    • /
    • 2000
  • The purpose of this paper is to recycle coal ash as structural backfill materials from electric power plants. Two million tons of coal ash are produced annually. The laboratory test was executed for the basic compatibility as substitution for structural backfill materials and the optimal mixture ratio(fly ash : bottom ash) was decided. In addition the model test was performed using medium scale earth pressure model with small size earth pressure cells model box data logger and some other apparatuses. Mixed coal ash and excellent backfill materials(coheisonless soil SW) were compared in the view of lateral earth pressure variation depending on wall displacement. The reduction of earth pressure when coal ash was used as a bockfill material was monitored comparing to that of cohesionless soil. the cost and environmental pollutants by treating coal ash can be reduced through developing the recycling technology.

  • PDF

Residues of Dioxins in Soil Cultured Ginseng of North Gyeongbuk (경북북부 인삼 재배 토양 중 Dioxins의 잔류)

  • Kim, Jung-Ho
    • Journal of Environmental Science International
    • /
    • v.21 no.4
    • /
    • pp.451-459
    • /
    • 2012
  • PCDDs(Polychlorinated dibenzo-$p$-dioxins) and PCDFs(polychlorinated dibenzofurans) are measured in soil of Yeungju and Sangju on North Gyeongbuk to investigate the risk assessment of dioxins. Dioxins are analyzed by HRGC/HRMS(high resolution gas chromatography - high resolution mass spectrometer). 2,3,7,8-T4CDD and 1,2,3,7,8-Pe5CDD in soil on Yeungju and Sangju are not detected. Also, 2,3,7,8-T4CDF is not detected in soil on Yeungju and Sangju. PCDDs and PCDFs in Yeungju soil are 1.957 pg/g and 0.294 pg/g, respectively. Total of dioxins in Yeungju soil are 2.251 pg/g. PCDDs and PCDFs in Sangju soil are 1.220 pg/g and 0.420 pg/g, respectively. Total of dioxins in Sangju soil are 1.640 pg/g. PCDDs and PCDFs in Yeungju soil are 0.0049 pg WHO-TEQ/g and 0.0123 pg WHO-TEQ/g, respectively. Total of dioxins with PCDDs and PCDFs in Yeungju soil are 0.0172 pg WHO-TEQ/g. PCDDs and PCDFs in Sangju soil are 0.0065 pg WHO-TEQ/g and 0.0213 pg WHO-TEQ/g, respectively. Total of dioxins with PCDDs and PCDFs in Sangju soil are 0.0278 pg WHO-TEQ/g. Amount for pg/g concentration unit of PCDDs is higher than amount of PCDFs in soil. But, WHO-TEQ of PCDFs is higher than WHO-TEQ of PCDDs in soil.

Content of Heavy Metal in Paddy Soil and Brown Rice under Long-Term Fertilization (동일비료(同一肥料) 장기연용(長期連用) 토양(土壤) 및 현미중(玄米中)의 중금속함량(重金屬含量))

  • Jung, Goo-Bok;Kim, Bok-Young;So, Kyu-Ho;Lee, Jong-Sik;Yeon, Beong-Yeal;Chung, Yee-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.2
    • /
    • pp.150-157
    • /
    • 1996
  • This study was conducted to observe the heavy matal contents of paddy soil and brown rice under long term fertilization with different soil amelioration materials. The contents of 0.1N HCl extractable Cu and Zn of surface soil increased in the plots of long term application with urea, ammonium sulfate, compost, lime and silicate fertilizers. The Cu and Zn contents of brown rice showed decreasing trends in same treatments of fertilizers and soil amelioration materials. But the contents of Cd and Pb in soil and brown rice were not affected in long term fertilization with soil amelioration materials.

  • PDF

Evaluation of Flow and Engineering Properties of High-Volume Supplementary Cementitious Materials Lightweight Foam-Soil Concrete (하이볼륨 혼화재 경량기포혼합토 콘크리트의 유동성 및 공학적 특성 평가)

  • Shim, Sang-Woo;Yang, Keun-Hyeok;Lee, Kyung-Ho;Yun, In-Gu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.247-254
    • /
    • 2014
  • The present study prepared lightweight foam-soil concrete mixtures classified into three groups. Considering the sustainablility, workability, and compressive strength development of such concrete, high-volume supplementary cementitious materials (SCMs) were used as follows: 20% cement, 15% fly ash, and 65% ground granulated blast-furnace slag. As main test parameters selected for achieving the compressive strength of 1MPa and dry density of $1,000kg/m^3$, the unit solid content (dredged soil and binder) ranged between 900 and $1,807kg/m^3$, and soil-to-binder ratio varied between 3.0 and 7.0. Test results revealed that the flow of the lightweight foam-soil concrete tended to decrease with the increase of unit soil content. The compressive strength of such concrete increased with the increase with the unit binder content, whereas it decreased as soil-to-binder ratio increased, indicating that the compressive strength can be formulated as a function of its dry density and soil-to-binder ratio.

Effects of Organic Materials Application on Growth of Peanut Plant (유기물(有機物) 시용(施用)이 땅콩 생육(生育)에 미치는 영향(影響))

  • Hwang, Nam-Yul;Chae, Jae-Seok;So, Jae-Don
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.2
    • /
    • pp.215-220
    • /
    • 1985
  • This experiment was conducted to find out the effects of organic materials application on the growth of peanut, yield and chemical properties in mature field and newly reclaimed upland soil. The result can be summarized as follow. 1. Application of rice straw and rice hull increased the yield of peanut in mature field and compost plot was more yield than any other plot in newly reclaimed upland soil. 2. Rice straw and rice hull plot was heavier the weight of needles per plant than compost plot in newly reclaimed soil. 3. There was high correlation between soil O.M. at flowering stage and yield in newly reclaimed upland soil but was not significant in mature field. 4. Contents of soil O.M. did not change in mature field however this was increased tendency in newly reclaimed upland soil.

  • PDF

Hydraulic Characteristics of Arable Fields in Korea and Applicability of Pedotransfer Functions

  • Jung, Kangho;Sonn, Yeonkyu;Hur, Seungoh;Han, Kyunghwa;Cho, Heerae;Seo, Mijin;Jung, Munho;Choi, Seyeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.655-661
    • /
    • 2016
  • Relationships between saturated conductivity (Ks) and separate contents were evaluated from 44 soil series of arable lands: 18 for paddy fields and 26 for upland crop fields. Saturated hydraulic conductivities of A, B, and C horizons were determined with tension infiltrometer and Guelph permeameter in situ. Sand, silt, clay, and organic matter content of each horizon were analyzed. Based on correlation analysis, sand separate had a positive relationship with Ks for both paddy (r=0.27, p=0.017) and upland fields (r=0.24. p=0.030). Clay content had a negative relationship with Ks for paddy soils (r=-0.32, p=0.005) while significant correlation between them was not found for upland crop fields (r=-0.20, p=0.07). Organic matter content showed a positive relationship with Ks only for upland crop fields (r=0.33, p=0.002). Due to low correlation coefficients between separate contents and Ks, performance of pedotransfer functions was not enough to estimate Ks. It implies that hydraulic properties of arable lands were affected by other factors rather than particle characteristics. Platy structure and plow pan were suggested to limit Ks of paddy fields. Soil compaction and diversity of parent materials were proposed to influence Ks of upland crop fields. It suggests that genetic processes and artificial managements should be included in pedotransfer functions to estimate hydraulic properties appropriately.

Physico-Chemical Properties of the Recycled Waste Soils from Construction Site as Planting Soil (건설폐토석의 식생용토로서의 이화학적 특성)

  • Kim, Won-Tae;Yoon, Yong-Han;Park, Bong-Ju
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.5
    • /
    • pp.31-39
    • /
    • 2007
  • This study was carried out to evaluation the recycled waste soils from construction site for planting soil. For this purpose, the concentrations of polluted materials and the physico-chemical properties were measured at recycled soil samples of an industrial waste treating company in the Metropolitan landfill area. The concentrations of polluted materials did not exceed to the standard critical levels of soil pollution in all analyzed items. The measures of the samples soil texture (loamy sand), bulk density (1.09~1.32g/$cm^3$), saturated hydraulic conductivity ($1.6{\times}10^{-3}{\sim}1.8{\times}10^{-3}$cm/sec), solid phase distribution (0.4~0.5$m^3/m^3$), porosity (0.5~0.6$m^3/m^3$), Ex. $K^+$ (1.0~1.2cmol/kg), Ex. $Mg^{2+}$ (0.2~0.6cmol/kg) were identified as not worse than those of conventional planting soil. But the sample soils have serious problems for planting soil such as high levels of pH (9.6~11.5), EC (0.78~1.84ds/m) and Ex. $Ca^{2+}$ (25.6~34.5cmol/kg), low level of organic matter (0.2~0.3%). It is required to improve pH, EC and Ex. $Ca^{2+}$ of sample soils. Consequently, the results suggested a high potential of recycling of the wastes soils for planting soil.

A Study on the Volatilization of Ammonia from Flooded Soils Mixed with Rice Straw and Liming Materials (담수토양(湛水土壤)에서 볏짚과 석회물질(石灰物質) 시용(施用)이 암모니아 휘산(揮散)에 미치는 영향(影響))

  • Oh, Wang-Keun;Hwang, Kwang-Nam;Lee, Myong-Gu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.3
    • /
    • pp.166-171
    • /
    • 1982
  • A laboratiory experiment incubated at about $30^{\circ}C$ for 34 days was conducted in order to learn the effect of liming materials and rice straw on the volatilization of ammonia from flooded soils applied with urea. 1. The application of calcium hydroxide and calcium silicate increased buffer action of flood soil, though it resulted in increase in the volatilization of ammonia through raising flooded soil pH containing bicarbonate. 2. The mixing of rice straw powder to soil lowered pH of flooded soil, and decreased the volatilization of ammonia. The effect was particulary large when noliming material was used. 3. Calcium hydroxide depressed the evolution of $CO_2$ in the early days of incubation after flooding, while calcium silicate promoted the ammonification of soil nitrogen from the begining of flooding giving slow change in soil chemical properties. The rice straw was also effective in providing a favorable soil condition for the ammonification rather quickly.

  • PDF

Mineralogical and Geochemical Characteristics of Ancient Field Soil in Jeongdongri as Ceramic Raw Materials of the Baekje Kingdom (백제 와전재료로서 정동리 고토양의 광물 및 지구화학적 특성)

  • Jang, Sung-Yoon;Lee, Chan-Hee
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.543-553
    • /
    • 2010
  • This study was focused on the mineralogical and geochemical characteristics of field soil of the Baekje Kingdom from K wongbawigol site in Jeongdongri, Buyeo and whether the bricks from Songsanri Tombs and Muryung's Royal Tomb were made of soil from this site. Soil samples show the similar size fraction as a silt loam and acidic soil, whereas some samples have the enrichment of organic matter, P and S. Also, they have similar geochemical behavior of elements and similar mineral phases consisting of quartz, plagioclase, orthoclase, vermiculite, mica and kaolinite. The enrichment of iron oxide is found in some soil layer, including the iron oxide mottling and precipitation along plant roots and they are attributed to repeat oxidation and reduction environments due to flooding and drainage of field soil. It's anthropogenic alteration by human activity. Especially, it is assumed that the concentration of the iron oxides found in bricks from Muryung's Royal Tomb and Songsanri Tombs is the additional evidence that soil in this study is probably the raw materials of those bricks.

Firing Condition, Source Area and Quantitative Analysis of Plain Coarse Pottery from the Unjeonri Bronze Age Relic Site, Cheonan, Korea (천안 운전리 청동기 유적지에서 출토된 무문토기의 정량분석, 산지 및 소성조건)

  • Choi, Seok-Won;Lee, Chan-Hee;Oh, Kuy-Jin;Lee, Hyo-Min;Lee, Myeong-Seong
    • Korean Journal of Heritage: History & Science
    • /
    • v.36
    • /
    • pp.267-297
    • /
    • 2003
  • The plain coarse pottery from the Unjeonri Bronze Age relic sites in the Cheonan, Korea were studied on the basis of clay mineralogy, geochemistry and archaegeological interpretations. For the research, the potteries are utilized at the analysis for 6 pieces of plain coarse potteries. Color of the these potteries are mainly light brown, partly shows the yellowish brown to reddish brown. The interior, surface and inside of the pottery appear as different colors in any cases. Original source materials making the Unjeonri potteries are used of mainly sandy clay soil with extreme coarse grained irregularly quartz and feldspar. The magnetic susceptibility of the Unjeonri pottery range from 0.20 to 1.20. And the Unjeonri soil's magnetic susceptibility agree almost with 0.20 to 1.30. In the same magnetization of soil and pottery, the results revealed that the Unjeonri soil and low material of pottery are same produced by identical source materials. The Unjeonri potteries and soil are very similar patterns with all characteristics of soil mineralogy, geochemical evolution trend. The result seems to be same relationships between the behavior and enrichment patterns on the basis of a compatible and a incompatible elements. Consequently, the Unjeonri potteries suggest that made the soil to be distributed in the circumstance of the relic sites as the raw material are high in a greater part. In the Unjeonri soil, the kaolinite is common occurred minerals. However, in the Unjeonri pottery, the kaolinite was not detected in all broken pieces. The kaolinite was presumed to destroy crystal structure during the firing processes of over $550^{\circ}C$. The quartz is phase transition from ${\alpha}$-quartz to ${\beta}$-quartz at $573^{\circ}C$, but the Unjeonri pottery did not investigated any phase transition evidences of quartz. The chorite was detected within the mostly potteries and soils. As the results, the Unjeonri potteries can be interpreted by not experiencing a firing temperature over $800^{\circ}C$. The colloidal and cementing materials between the quartz and low materials during the heating did not exist in the internal part of the potteries. An any secondary compounds by heating does not appear within the crack to happen during the dry of the pottery. The hyphae group are kept as it is with the root tissue of an organic matters to live in the swampy land. In the syntheses of all results, the general firing condition to bake and make the Unjeonri pottery is presumed from $550^{\circ}C$ to $800^{\circ}C$. However, the firing condition making the Unjeonri pottery can be different firing temperature partially in one pottery. Even, the some part of the pottery does not take a direct influence on the fire.