• Title/Summary/Keyword: soil indicator

Search Result 270, Processing Time 0.025 seconds

Characteristics of Groundwater Pollution and Contaminant Attenuation at Waste Disposal Sites (폐기물 매립지 주변의 지하수 오염과 오염물질의 지연 특성)

  • 오석영;전효택
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.3 no.1
    • /
    • pp.37-49
    • /
    • 1996
  • The objectives of this study are to investigate the groundwater and surface water contamination, to interpret the attenuation mechanism of contaminant transport, and to find the appropriate contamination indicator. at the two big landfill sites : Nanjido Landfill and Hwasung Landfill. Leachate from the Nanjido, th, Hwasung and the Kimpo waste disposal sites is characterized by high temperature (31.7-40.1$^{\circ}C$), high electric conductivity (14,650-32,800 ${\mu}$S/cm), somewhat higher pH(7.58-8.45) and low Eh (-119.4-20.4 mV), and is enriched in both major (Na$^{+}$, K$^{+}$, Ca$^{2+}$, Mg$^{2+}$, HC $O_3$$^{-}$, Cl$^{-}$) and minor (Mn, Sr$^{2+}$, Ba$^{2+}$, Li$^{+}$, F$^{-}$, Br$^{-}$) ions. Municipal solid waste leachate and industrial waste leachate are effectively discriminated by the content of S $O_4$$^{2-}$, Fe, and heavy metals. The attenuation mechanism of each component was assessed using the chemical analysis. Cl-normalizing process, WATEQ4F simulation, and preceding flownet analysis. Based on the calculation of Contamination Factor, K, Na, Ca, Mg, B, Zn, HC $O_3$, Cl, F, Br and TOC are effective contamination indicators in the Nanjido landfill site, and K, Na, Ca, Mg, B, S $O_4$, HC $O_3$, Cl, F, Br and TOC in the Habsburg landfill site Particularly, TOC is the best contamination indicator in landfill sites influenced by sea water.

  • PDF

Detection of flash drought using evaporative stress index in South Korea (증발스트레스지수를 활용한 국내 돌발가뭄 감지)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Mark, D. Svoboda;Brian, D. Wardlow
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.577-587
    • /
    • 2021
  • Drought is generally considered to be a natural disaster caused by accumulated water shortages over a long period of time, taking months or years and slowly occurring. However, climate change has led to rapid changes in weather and environmental factors that directly affect agriculture, and extreme weather conditions have led to an increase in the frequency of rapidly developing droughts within weeks to months. This phenomenon is defined as 'Flash Drought', which is caused by an increase in surface temperature over a relatively short period of time and abnormally low and rapidly decreasing soil moisture. The detection and analysis of flash drought is essential because it has a significant impact on agriculture and natural ecosystems, and its impacts are associated with agricultural drought impacts. In South Korea, there is no clear definition of flash drought, so the purpose of this study is to identify and analyze its characteristics. In this study, flash drought detection condition was presented based on the satellite-derived drought index Evaporative Stress Index (ESI) from 2014 to 2018. ESI is used as an early warning indicator for rapidly-occurring flash drought a short period of time due to its similar relationship with reduced soil moisture content, lack of precipitation, increased evaporative demand due to low humidity, high temperature, and strong winds. The flash droughts were analyzed using hydrometeorological characteristics by comparing Standardized Precipitation Index (SPI), soil moisture, maximum temperature, relative humidity, wind speed, and precipitation. The correlation was analyzed based on the 8 weeks prior to the occurrence of the flash drought, and in most cases, a high correlation of 0.8(-0.8) or higher(lower) was expressed for ESI and SPI, soil moisture, and maximum temperature.

Viability Assay of Seaweeds Responding to Mountain Fire-Related Pollutants (산불 관련 해양환경오염원들에 대한 해조류의 활력 측정)

  • KANG Se-Eun;JIN Long-Guo;CHOI Jae-Suk;CHO Ji-Young;SHIN Hyun-Woung;HONG Yong-Ki
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.3
    • /
    • pp.225-229
    • /
    • 2003
  • Plant ash and soil drainage, derived by frequent mountain fires during winter, might cause biological contamination to seaweeds at seashore and river mouse area. To thalli of Ulva pertusa, maximum non-lethal concentration(MNLC), lethal concentration 50 $(LC_{50})$ and minimum lethal concentration (MLC) of pine needle ash were shown as 60, 350 and 550 mg/mL, respectively. The yellow loess and granite sand did not damage at concentrations of 20 and 200 mg/mL, respectively To thalli of Porphyra yezoensis, the MNLC, LC5O, MLC of pine needle ash were shown as 0.08, 0.4 and 1.0 mg/mL, respectively. Effects of yellow loess and granite sand were approximately 1/2 and 1/10 of the ash. To thalli of Undaria pinnatifida, the pine needle ash, yellow loess and granite sand did not damage at the concentration range of 20 to 40 mg/mL. Change of pigments $(chlorophyll\;\alpha,\;lutein,\;\beta-carotene,\;phycoerthrin)$ was also determined at the MNLC, $LC-{50}$ and MLC of pine needle ash. Among three seaweeds tested, P. yezoensis produced the most 2.7-fold of lutein and 2.3-fold of $\beta-carotene$ at $LC-{50}$ of the ash. Thus the P. yezoensis, appeared as a sensitive indicator, could be used as one of test organisms for determination of the biological effect of pollutants contaminated in marine environment.

Effect of salt stress on the anthocyanin content and associated genes in Sorghum bicolor L.

  • Jeon, Donghyun;Lee, Solji;Choi, Sehyun;Seo, Sumin;Kim, Changsoo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.105-117
    • /
    • 2020
  • Abiotic stress is one of the most serious problems in plant productivity because it dramatically delays plant growth and development. One of the abiotic stresses, soil salinity, has an adverse effect on plant growth, particularly in areas where irrigation is necessary like semiarid Asia and Africa. Among several physiological parameters, anthocyanin accumulation is a valuable indicator of the condition of the plant, and it tends to increase under salt stress conditions because of its protective role in such an environment. Consequently, it may be important to search for well adapted genotypes for upcoming climate changes. Anthocyanins are known to have important roles in defense against biotic and abiotic stresses, providing important functions for protecting plant cells from reactive oxygen species. In this study, we investigated the anthocyanin accumulation between two Korean sorghum genotypes, Sodamchal and Nampungchal. The two genotypes were subjected to a regulated salinity condition, and the anthocyanin contents were evaluated in both. In Nampungchal, the anthocyanin content increased with 150 mM NaCl treatment during the time course of the experiment. However, the anthocyanin content of Sodamchal decreased in the same condition. The measured values of the anthocyanin content should be useful to identify the intensity of the salt tolerance in Sorghum bicolor L. Furthermore, we studied gene expression profiling of salt stress related genes with qRT-PCR. These results suggest that Nampungchal is a more tolerant genotype to salt stress compared to Sodamchal. This information should be useful for breeding salt-resistant cultivars in sorghum.

Development of Indicators for Dredging Evaluation and Form on Erosion Control Dam Using the Delphi Technique and AHP Analysis (델파이 기법과 AHP를 이용한 중력식 사방댐 준설 평가지표 및 조사야장 개발)

  • Seo, Junpyo;Lee, Changwoo;Woo, Choongshik;Lee, Heonho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.6
    • /
    • pp.1-15
    • /
    • 2014
  • A dredging on erosion control dam has been enforced without evaluation the factors that affect the dredging. In addition, there is the negative effect much more than positive effect by dredging on erosion control dam. Therefore, this study was carried out to develop evaluation indicators and to suggest fieldbook in order to determine whether sand deposits at erosion control dam should be dredged up or not. The most important six evaluation indicators that can decide to dredge up at erosion control dam were obtained from three round delphi technique and were selected in the following order: the current sand deposit ratio(0.339), existence of cultivated land and house downstream(0.276), the slope of streambed(0.162), the amount of movable soil and gravel(0.118), the history of any disasters(0.063), the basin area(0.043). The weighted score for each evaluation indicator were acquired from AHP analysis with respect to the degree of importance and then the modified weighted score for actual measurements were classified as three categories: large(2.53), medium(1.60) and small(1.01). Based on delphi technique, erosion control dam dredging evaluation fieldbook introduced the four evaluation indicators out of the total six evaluation indicators and two low effected evaluation indicators were excluded. This results showed that the values for reliability analysis and consistency ratio were acceptable.

A Study on the Seismic Resistance of Fill-dams by Newmark-type Deformation Analysis (Newmark 기반 변형해석에 의한 필댐의 내진저항성 연구)

  • Park, Dong Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.161-170
    • /
    • 2014
  • Newmark-type deformation analysis has rarely been done in Korea due to the popularity of simple pseudo-static limit equilibrium analysis and detailed time-history FE/FD dynamic analysis. However, the Korean seismic dam design code updated in 2011 prescribes Newmark-type deformation analysis as a major dynamic analysis method for the seismic evaluation of fill dams. In addition, a design PGA for dynamic analysis is significantly increased in the code. This paper aims to study the seismic evaluation of four existing large fill dams through advanced FEM/Newmark-type deformation analyses for the artificial earthquake time histories with the design PGA of 0.22g. Dynamic soil properties obtained from in-situ geo-physical surveys are applied as input parameters. For the FEM/Newmark analyses, sensitivity analyses are performed to study the effects of input PGA and $G_{max}$ of shell zone on the Newmark deformation. As a result, in terms of deformation, four fill dams are proved to be reasonably safe under the PGA of 0.22g with yield coefficients of 0.136 to 0.187, which are highly resistant for extreme events. Sensitivity analysis as a function of PGA shows that $PGA_{30cm}$ (a limiting PGA to cause the 30 cm of Newmark permanent displacement on the critical slip surface) is a good indicator for seismic safety check. CFRD shows a higher seismic resistance than ECRD. Another sensitivity analysis shows that $G_{max}$ per depth does not significantly affect the site response characteristics, however lower $G_{max}$ profile causes larger Newmark deformation. Through this study, it is proved that the amplification of ground motion within the sliding mass and the location of critical slip surface are the dominant factors governing permanent displacements.

Effect of plant growth promoting bacteria on early growth of wheat cultivars

  • Lee, Sang Gyu;Lee, Hyeri;Lee, Jimin;Lee, Byung Cheon;Lee, Hojoung;Choi, Changhyun;Chung, Namhyun
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.3
    • /
    • pp.247-250
    • /
    • 2019
  • Wheat is one of the most important grains. Its consumption is increasing globally. Many countries are making efforts to increase the extent of wheat harvest. It is known that plant growth promoting rhizobacteria (PGPRs) have beneficial effects on various plants. Two PGPRs including Paenibacillus pabuli strain P7S (PP7S) and Pseudomonas nitroreducens strain IHB (PnIHB) were employed to investigate effects of PGPRs on early growth of three wheat cultivars (Koso, Seakumkang, and Jokyung). While PP7S had adverse effects on Seakumkang and Jokyung, PP7S had positive effects on Koso except root length compared to control group having no treatment of PP7S. However, all treatments with PnIHB had adverse effects on germination rate, root/shoot lengths, vigor index, and dry root/shoot weights of all three wheat cultivars. These positive effects with PP7S on Koso might be related to the earlier emergence of wheat seed above soil which is known to be an indicator of increased yield. Results of the present study suggest that if proper PGPR strains are selected, they could have positive effects on early growth rate of a wheat cultivar.

Hydrological modeling of Fecal Indicator Bacteria in a tropical mountain catchment (열대 산지 유역의 지표 분변성 세균 거동 모의)

  • Kim, Min-Jeong;Jo, Gyeong-Hwa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.94-94
    • /
    • 2017
  • 지속적인 수질의 모니터링과 관리가 어려운 개발도상국의 경우, 모델링을 통한 병원균의 예측이 중요하다. Soil and Water Assessment Tool (SWAT)은 유역 모델로 병원균의 거동을 모의하는데 널리 활용된다. 하지만 SWAT이 모의하는 in-stream 모듈의 경우, 소멸, 부유, 퇴적의 단계만을 고려하여 정확도가 부족하다. 따라서 본 연구는 기존 모듈에 hyporheic exchange와 생장 단계를 추가하여 모듈의 성능 개선 및 열대 산지 유역에서의 병원균의 거동을 모의하였다. 본 연구는 몬순 기후 및 산지 지형을 가진 라오스의 Houay Pano 유역을 대상으로 대장균 (Escheichia coli, E.coli)의 거동을 2011년부터 2013년까지 일 단위로 모의하였다. 기존의 SWAT 박테리아 모듈의 경우, 소멸 단계만을 가지고 보정하였을 때 모델은 대부분 0의 값을 가졌고, 부유 및 퇴적 단계가 추가 된 후에는 우기시 대부분의 모델값이 관측값의 95% 신뢰 구간에 포함되었으나 건기에는 농도가 여전히 낮게 모의됨을 확인 할 수 있다. 건기 시 낮게 모의된 농도를 증가시키기 위해, 온도에 따른 생장 단계를 추가하였으며, 이때 생장 속도는 설정된 최소-최대 생장 온도 사이에서 최대값을 가진다. 하지만 온도에 따른 생장은 열대 기후의 특성상 전 기간에 걸쳐 동시에 증가하여 건기에만 낮게 모의된 농도를 보완하는 데는 한계가 있었다. Hyporheic exchange는 강바닥에 임시로 저장된 박테리아의 양이 특정 유량에 의해서 수계로 유입되는 현상으로, 본 연구에서는 일정한 양의 hyporheic flow를 가정하여 모의하였다. 결과적으로 Hyporheic exchange를 통해 유입되는 적은 양의 E.coli는 기존에 타당하게 모의된 우기의 농도는 그대로 유지하되, 건기에 낮게 모의된 농도는 증가시켜 기존 SWAT 모듈의 한계점을 잘 보완한 것을 확인 하였다. 결론적으로, 기존의 SWAT 모델은 건기 시 낮은 농도의 E.coli를 모의하기에 한계를 보였으며, 전 기간에 걸쳐 높은 온도를 유지하는 열대 기후에서 생장 단계는 이러한 한계를 보완하기에 적합하지 않은 것으로 판단되었다. 그러나 적은 양이 전 기간에 걸쳐 동일하게 유입되는 hyporheic exchange의 경우, 건기에 낮게 모의된 농도를 증가시켜 기존의 한계를 보완할 수 있었다.

  • PDF

Dissolved Organic Matter (DOM) Leaching from Microplastics under UV-Irradiation and Its Fluorescence P roperties: Comparison with Natural P articles (UV 광풍화에 의한 미세플라스틱 기원 유기물 용출과 형광 특성: 자연유래 유기성 입자와의 비교)

  • Choi, Na Eun;Lee, Yun Kyung;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.2
    • /
    • pp.72-81
    • /
    • 2022
  • Numerous studies have investigated the occurrence and fate of microplastics in the environment; however, only limited effort has been devoted to exploring the characteristics of dissolved organic matter (DOM) leached from microplastics. In microplastic (MP)-contaminated environment, MPs are typically mixed with naturally-occurring particles, which interferes with their detection in the environment. Thus, it is necessary to distinguish between the DOM leached from MPs and those leached from natural particles and also to characterize their properties. This study investigated DOM leaching behavior from MPs (polystyrene: PS, polyvinylchloride: PVC) and natural particulates (forest soil: FS, litter leaves: LL) under light, which is considered one of the main weathering processes that affect MPs in the environment. The leached DOM concentrations and fluorescence characteristics were compared under dark versus light conditions. Regardless of the origins, UV light promoted DOM release from all the particulates. More DOM was released from natural particles than from MPs under both conditions. However, the effect of promoting DOM release by UV was more pronounced for MPs than for natural particles. It was observed from fluorescence spectra that the intensity of the humic-like region was substantially reduced when MP-derived DOM was exposed to UV light, whereas the change of intensity was very little for natural particles. Under light conditions, the ratio of protein-like to humic-like fluorescence of MP-derived DOM was higher than that of DOM from natural particles. This study implies that a substantial amount of DOM could be leached from MPs even in MP-polluted environment under UV irradiation. Protein/humic fluorescence ratio could be utilized as a fast probing indicator to separate the two sources of particles under light.

Assessment of Water Use Vulnerability Considering Climate and Socioeconomic Changes in Han River Watershed (기후 및 사회·경제 변화를 고려한 한강 유역의 물이용 취약성 평가)

  • Park, Hyesun;Kim, Heey Jin;Chae, Yeora;Kim, Yeonjoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.965-972
    • /
    • 2017
  • Assessment of vulnerability of water use to climate change include a variety of climate change scenarios. However, in most future vulnerability studies, only the climate change scenarios are used and not the future scenarios of social and economic indicators. Therefore, in this study, we applied the Representative Concentration Pathway (RCP) climate change scenario and Shared Socioeconomic reference Pathway (SSP) developed by IPCC to reflect the future. We selected indicators for estimating the vulnerability of water use, and indices were integrated with a multi-criteria decision making approach - Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The indicator data utilized national statistics and reports, social and economic scenarios, and simulated results from the Soil and Water Assessment Tool (SWAT) model which reflects climate change scenario. Finally, we derived the rankings of water use vulnerability for the short-term future (2020) and mid-term future (2050) within the Han River watershed. Generally, considering climate change alone and considering climate change plus social and economic changes showed a similar spatial distribution. In the future scenarios, the watershed rankings were similar, but showed differences with SSP scenario in some watersheds. Therefore, considering social and economic changes is expected to contribute to more effective responses to climate change.