• Title/Summary/Keyword: soil heterogeneity

Search Result 101, Processing Time 0.025 seconds

SPATIAL AND TEMPORAL INFLUENCES ON SOIL MOISTURE ESTIMATION

  • Kim, Gwang-seob
    • Water Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.31-44
    • /
    • 2002
  • The effect of diurnal cycle, intermittent visit of observation satellite, sensor installation, partial coverage of remote sensing, heterogeneity of soil properties and precipitation to the soil moisture estimation error were analyzed to present the global sampling strategy of soil moisture. Three models, the theoretical soil moisture model, WGR model proposed Waymire of at. (1984) to generate rainfall, and Turning Band Method to generate two dimensional soil porosity, active soil depth and loss coefficient field were used to construct sufficient two-dimensional soil moisture data based on different scenarios. The sampling error is dominated by sampling interval and design scheme. The effect of heterogeneity of soil properties and rainfall to sampling error is smaller than that of temporal gap and spatial gap. Selecting a small sampling interval can dramatically reduce the sampling error generated by other factors such as heterogeneity of rainfall, soil properties, topography, and climatic conditions. If the annual mean of coverage portion is about 90%, the effect of partial coverage to sampling error can be disregarded. The water retention capacity of fields is very important in the sampling error. The smaller the water retention capacity of the field (small soil porosity and thin active soil depth), the greater the sampling error. These results indicate that the sampling error is very sensitive to water retention capacity. Block random installation gets more accurate data than random installation of soil moisture gages. The Walnut Gulch soil moisture data show that the diurnal variation of soil moisture causes sampling error between 1 and 4 % in daily estimation.

  • PDF

Ecological Division of Habitats by Analysis of Vegetation Structure and Soil Environment -A Case Study on the Vegetation in the Kimpo Landfills and Its Periphery Region- (식생구조와 토양환경 분석을 통한 서식처의 생태학적 구분 -김포매립지와 그 근린 지역의 식생을 사례로 -)

  • Kim, Jong-Won;Yong-Kyoo Jong
    • The Korean Journal of Ecology
    • /
    • v.18 no.3
    • /
    • pp.307-321
    • /
    • 1995
  • Division of ecoregions having respective functions was attempted through quantitative and qualitative analysis on vegetation diversity, and heterogeneity and on soil environment of the study sites. Field research was carried out in a square of 81 ㎢ around Andongpo (126°38'E, 37°30'N), Kimpo-gun, Kyonggi provice. Conventional methods applied are as follows: classical syntaxonomy by the Zurich-Montpellier School, interpolation method to determine the degree of diversity, heterogeneity and distribution pattern of vegetation, and correlation analysis between soil properties and plant communities. 41 plant communities were identified and composed of 6 forests, 4 mantle and 31 herb communities including 6 saltmarsh plant communities. In a mesh, number of plant communities was highly correlated to the number of species. The highest number of plant community and species was 25 communities·km-2·mesh-1 and 381 species· km-2·mesh-1 ,and the highest value of vegetation heterogeneity was 28.1 species· community-1·mesh-1. Their lowest numbers were 4 communities·km-2·mesh-1. and 28 species·km-2·mesh-1. and 7 species·community-1·mesh-1, respectively. Contour map on vegetation diversity and heterogeneity enabled us to establish two regions; coastal and inland vegetation. Isoline 〔150〕,〔10〕and〔10〕and〔15〕on the species diversity, the community diversity and the vegetation heterogeneity, respectively, were regarded as ecolines in the study area. Cl- content was recognized as the most important factor from correlation analysis between soil properties. Ordination of sites indicated that the study area be divided into two edaphic types: inland and coastal habitats. It was considered that the extent of desalinization in soil played a major role in determining the species composition in the reclamed area. By matching edaphic division of habitats with division of vegetation structures, designation of ecoregion was endorsed. The approach of current study was suggested as an effective tool to implement an assessment of the vegetation dynamics by the disparity of natural environment and anthropogenic interferences.

  • PDF

수리지질학적 조건에 따른 지하수유동 및 오염물질이동 영향연구

  • 이진용;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.280-282
    • /
    • 2002
  • In analysis of pumping test data, generally infinite domain has been assumed. However, in many cases, this assumption was not readily satisfied. Some boundaries conditions and natural heterogeneity of hydrogeologic properties would play critical roles on groundwater flow and contaminant transport. This study examined effects of some boundary conditions and heterogeneity on the groundwater flow and contaminant transport with basic numerical groundwater modeling, which provides implications for remediation of contaminated groundwater.

  • PDF

Determination of Soil Sample Size Based on Gy's Particulate Sampling Theory (Gy의 입자성 물질 시료채취이론에 근거한 토양 시료 채취량 결정)

  • Bae, Bum-Han
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.1-9
    • /
    • 2011
  • A bibliographical review of Gy sampling theory for particulate materials was conducted to provide readers with useful means to reduce errors in soil contamination investigation. According to the Gy theory, the errors caused by the heterogeneous nature of soil include; the fundamental error (FE) caused by physical and chemical constitutional heterogeneity, the grouping and segregation error (GE) aroused from gravitational force, long-range heterogeneous fluctuation error ($CE_2$), the periodic heterogeneity fluctuation error ($CE_3$), and the materialization error (ME) generated during physical process of sample treatment. However, the accurate estimation of $CE_2$ and $CE_3$ cannot be estimated easily and only increasing sampling locations can reduce the magnitude of the errors. In addition, incremental sampling is the only method to reduce GE while grab sampling should be avoided as it introduces uncertainty and errors to the sampling process. Correct preparation and operation of sampling tools are important factors in reducing the incremental delimitation error (DE) and extraction error (EE) which are resulted from physical processes in the sampling. Therefore, Gy sampling theory can be used efficiently in planning a strategy for soil investigations of non-volatile and non-reactive samples.

Soil Microbial Communities Associated with Three Arctic Plants in Different Local Environments in Ny-Ålesund, Svalbard

  • Son, Deokjoo;Lee, Eun Ju
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1275-1283
    • /
    • 2022
  • Understanding soil microbial community structure in the Arctic is essential for predicting the impact of climate change on interactions between organisms living in polar environments. The hypothesis of the present study was that soil microbial communities and soil chemical characteristics would vary depending on their associated plant species and local environments in Arctic mature soils. We analyzed soil bacterial communities and soil chemical characteristics from soil without vegetation (bare soil) and rhizosphere soil of three Arctic plants (Cassiope tetragona [L.] D. Don, Dryas octopetala L. and Silene acaulis [L.] Jacq.) in different local environments (coal-mined site and seashore-adjacent site). We did not observe any clear differences in microbial community structure in samples belonging to different plant rhizospheres; however, samples from different environmental sites had distinct microbial community structure. The samples from coal-mined site had a relatively higher abundance of Bacteroidetes and Firmicutes. On the other hand, Acidobacteria was more prevalent in seashore-adjacent samples. The relative abundance of Proteobacteria and Acidobacteria decreased toward higher soil pH, whereas that of Bacteroidetes and Firmicutes was positively correlated with soil pH. Our results suggest that soil bacterial community dissimilarity can be driven by spatial heterogeneity in deglaciated mature soil. Furthermore, these results indicate that soil microbial composition and relative abundance are more affected by soil pH, an abiotic factor, than plant species, a biotic factor.

Estimation of the Number of Sampling Points Required for the Determination of Soil CO2 Efflux in Two Types of Plantation in a Temperate Region

  • Lee, Na-Yeon(Mi-Sun);Koizumi, Hiroshi
    • Journal of Ecology and Environment
    • /
    • v.32 no.2
    • /
    • pp.67-73
    • /
    • 2009
  • Soil $CO_2$ efflux can vary markedly in magnitude over both time and space, and understanding this variation is crucial for the correct measurement of $CO_2$ efflux in ecological studies. Although considerable research has quantified temporal variability in this flux, comparatively little effort has focused on its spatial variability. To account for spatial heterogeneity, we must be able to determine the number of sampling points required to adequately estimate soil $CO_2$ efflux in a target ecosystem. In this paper, we report the results of a study of the number of sampling points required for estimating soil $CO_2$ efflux using a closed-dynamic chamber in young and old Japanese cedar plantations in central Japan. The spatial heterogeneity in soil $CO_2$ efflux was significantly higher in the mature plantation than in the young stand. In the young plantation, 95% of samples of 9 randomly-chosen flux measurements from a population of 16 measurements made using 72-$cm^2$ chambers produced flux estimates within 20% of the full-population mean. In the mature plantation, 20 sampling points are required to achieve means within $\pm$ 20% of the full-population mean (15 measurements) for 95% of the sample dates. Variation in soil temperature and moisture could not explain the observed spatial variation in soil $CO_2$ efflux, even though both parameters are a good predictor of temporal variation in $CO_2$ efflux. Our results and those of previous studies suggest that, on average, approximately 46 sampling points are required to estimate the mean and variance of soil $CO_2$ flux in temperate and boreal forests to a precision of $\pm$ 10% at the 95% confidence level, and 12 points are required to achieve a precision of $\pm$ 20%.

Derivation of the Effective Hydraulic Conductivity in Stratified Layered Soil Using Stochastic Approach (추계학적 방법을 이용한 성층화된 흙에서 유효 비포화투수계수의 유도)

  • Yun, Seong-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.699-708
    • /
    • 1997
  • The effective unsaturated hydraulic conductivity in stratified soils is evaluated using a three-dimensional stochastic approach. Because of the disparity of the correlation scales in a stratified soil, the general stochastic equations are simplified. This allows analytical evaluation of generic expressions for the effective hydraulic conductivities. Simple asymptotic expressions, valid at particular ranges(wetting front, drying condition, wetting condition) of the mean flow characteristics, are also derived. An example of applying the derived theoretical result to a imaginaryl clay soil is presented. It reveals found that the effective unsaturated hydraulic conductivity showed large-scale hysteresis. Such large-scale hysteresis was produced by the spatial variability of hydraulic soil properties rather than hysteresis of the local parameters. In addition the results show that the effective hydraulic conductivities were larger in the case of accommodating heterogeneity of soil preperties rather than neglecting heterogeneity of soil properties.

  • PDF

Property Changes of Vertical Soil Layers Planted with Zelkova serrata(Thunberg) Makino on the Reclaimed Land from the Sea in the Gwangyang Bay, Korea (광양만 임해 매립지 느티나무 식재지 토양의 수직적 특성 변화)

  • Kim Do-Gyun;Kim Yong-Shik
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.2 s.109
    • /
    • pp.60-70
    • /
    • 2005
  • This study was carried out to elucidate the vertical characteristics of soil properties at six planted sites of land reclaimed from the sea, in Gwangyang Bay, Jeollanam-do Province, Korea. Based on the types of planting site, the chemical properties of the vertical soil layers varied. The vertical variation was great in the planting sites $Z_1\;and\;Z_2$, but less varied in the mounded planting sites $Z_3,\;Z_5,\;and\;Z_6$. Major reasons for the vertical variation in soil chemical properties included differences in the accumulation of organic matter, soil disturbance by heavy construction equipment, and heterogeneity of soil properties between soil horizons. As soil depths increased, soil salts varied. The electrical conductivity (ECe) increased in the lower areas of planting sites $Z_1\;and\;Z_2$, and the disturbed, saline planting site $Z_3$, but decreased in the lower areas of $Z_3,\;Z_5,\;and\;Z_6$. These tendencies did not coincided with exchange cation concentrations $(Na^+,\;K^+,\;Mg^{++},\;Ca^{++})$. Both total carbon (T-C) and total nitrogen (T-N) accumulated more in the lower areas of planting sites than in the higher areas, and levels were higher closer to the surface than in the soil depths. It is supposed that these tendencies are related to the accumulation of fallen leaves or other organic matter at the soil surface, and the soil chemicals then slowly move downward from the surface. Impediments to tree growth included soil hardiness, high soil salinity and exchangeable cation concentration, low soil moisture content, acidic or alkaline soil, low organic matter, heterogeneity of soil texture and establishment of soil stratification.

Spatial Analyses of Soil Chemical Properties from a Remodeled Paddy Field as Affected by Wet Land Leveling

  • Jung, Ki-Yuol;Choi, Young-Dae;Lee, Sanghun;Chun, Hyen Chung;Kang, Hang-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.555-563
    • /
    • 2016
  • Uniformity and leveled distributions of soil chemicals across paddy fields are critical to manage optimal crop yields, reduce environmental risks and efficiently use water in rice cultivation. In this study, an investigation of spatial distributions on soil chemical properties was conducted to evaluate the effect of land leveling on mitigation of soil chemical property heterogeneity from a remodeled paddy field. The spatial variabilities of chemical properties were analyzed by geostatistical analyses; semivariograms and kriged simulations. The soil samples were taken from a 1 ha paddy field before and after land leveling with sufficient water. The study site was located at Bon-ri site of Dalseong and river sediments were dredged from Nakdong river basins. The sediments were buried into the paddy field after 50 cm of top soils at the paddy field were removed. The top soils were recovered after the sediments were piled up. In order to obtain the most accurate spatial field information, the soil samples were taken at every 5 m by 5 m grid point and total number of samples was 100 before and after land leveling with sufficient water. Soil pH increased from 6.59 to 6.85. Geostatistical analyses showed that chemical distributions had a high spatial dependence within a paddy field. The parameters of semivariogram analysis showed similar trends across the properties except pH comparing results from before and after land leveling. These properties had smaller "sill" values and greater "range" values after land leveling than ones from before land leveling. These results can be interpreted as land leveling induced more homogeneous distributions of soil chemical properties. The homogeneous distributions were confirmed by kriged simulations and distribution maps. As a conclusion, land leveling with sufficient water may induce better managements of fertilizer and water use in rice cultivation at disturbed paddy fields.

Modeling of Remediation Design in Theoretically Heterogeneous Domain

  • Ko, Nak-Youl;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.302-306
    • /
    • 2004
  • Probabilistic approaches are applied to the problem of groundwater remediation design to consider the risk of design and heterogeneity of real condition. Hydraulic conductivity fields are generated by two methods. First, the homogeneous domains which have the hydraulic conductivity with log-normal distribution are constructed by using Latin Hypercube method. Second, random fields with a certain spatial correlation are also generated. The optimal solutions represented by cumulative distribution function (CDF) of relative cost are calculated by three different manners. The one uses the homogeneous domains with the optimal design of base condition. It shows that ver)'wide range of cost and the influences of different penalty values. The other one uses the random field with same design and shows narrow range of cost. These CDF can reflect on the risk of optimal solution in a simple exampie condition and be effective in estimating the cost of groundwater remediation.

  • PDF