• Title/Summary/Keyword: soil gas

Search Result 820, Processing Time 0.029 seconds

Reuse and Remediation of Closed Landfill in Korea

  • Shin, Chan-ki
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2002.04a
    • /
    • pp.91-99
    • /
    • 2002
  • A recent survey investigated that there were over one thousand un-controlled closed landfills(1,072 sites) in Republic of Korea. Most of these landfills were constructed before 1986. Waste management act were not promulgated at that time, so they usually do not have dranage system and leachate treatment facility. Also, considerable attention has been received to landfill leachate pollution, leachate has an adverse impact on the surrounding environment such as soil, groundwater, and water supply source. According to the result of survey for closed landfill management, it was reported that 875 sites out of 1,072sites(81.6%) have no leachate treatment facility and 630 sites out of 1,072sites(58.7%) have been used for farm lands and residence. Consequently it is hard to do postclosure care continuously in most of cases and these uncontrolled landfills have contaminated farm lands and residence. The average age of these landfills are ranged mostly between 2 to 15 years. Much time and advanced technology are needed to remediate these uncontrolled landfills, therefore the survey for present status of closed landfill sites is required and suitable treatment processes should be prepared. With this point of view, We has been investigated to find out the present status of closed landfill, problems of post management and discussed plans for remediation and reuse. Remedial actions of un-controlled landfill have been carried out the many cities since 1997 upto now. Most frequently applied technology were reuse after excavation and there were several cases to capping in the surface of landfill and to construct subsurface barriers. It is considered that landfills in use have a possibility not to be controlled because of inadequate construction and improper management. Therefore remediation of uncontrolled landfills and recovery technology should be develop continuously Especially, it has been expected that resource technology of landfill gas as a energy has some advantages in controlling odors in the site area and accelerating stabilization of landfills with the energy.

  • PDF

Water logging tolerance of Indonesia chili pepper

  • Higashi, Airi;Suwignyo, Rujito Agus;Sakagami, Jun-Ichi;Yabuta, Shin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.281-281
    • /
    • 2017
  • Recently, global warming by greenhouse gas effect is getting danger and danger for human life and agriculture at present. In Indonesia, according to heavy rain in the agriculture land is often covered by excess water in result crop growth would be affected negative. This water stress triggers roots failure in anaerobic condition for upland crop because of limiting roots respiration. Chili pepper grows in upland sometimes in touch with waterlogging due to rainfall and /or over flow water from river in Indonesia. In this case, roots growing is inhibited by effect of shortage of oxygen at root cap. Therefore, the objective of this study is to observe the plant behavior in waterlogging using mahor local genotypes (Ferosa, Laris, Romario) in Sumatra. The experiment was kept by at 1cm depth water above the soil surface as a waterlogged treatment for ---days. As a result, waterlogging affected plant growth of chili negatively, especially for roots growth. Almost roots were getting bad and changed color for brown during waterlogging. A significant negative effect for nutrient absorption by roots was found in dry weight of all varieties during waterlogging. Dry weight of roots was decreased by 81.4% and 67.6%, and those of aerial part decreased by 74% and 67.2% compared with control in Ferosa and Romario at 1week after treatment. On the other hand, dry weight of roots was decreased only 35% in Laris. Therefore, Laris has a tolerance for waterlogging compared to with other varieties. Also, Laris in SPAD value was kept initial level during waterlogging however those of Ferosa and Romario decreased. Finally, due to impact of waterlogging, it may be the roots become failure because of less aerenchyma formation under anaerobic condition. We need confirm aerenchyma formation morphologically in the future.

  • PDF

Seasonal Size Distribution of Atmospheric Particles in Iksan, Korea

  • Kang, Gong-Unn;Kim, Nam-Song;Rhim, Kook-Hwan
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.6
    • /
    • pp.543-555
    • /
    • 2006
  • During a twenty-day period in 2005, a nine-stage Andersen cascade impactor was used to determine the seasonal size distribution of atmospheric particles and its inorganic ion species sampled for 24hr in Iksan city, located southwest of the Korean peninsula. Samples were analyzed for major water-soluble ion species using Dionex-100 ion chromatograph. Average fine and coarse mass concentrations of atmospheric particles were, respectively, 31.4 and $82.6{\mu}g\;m^{-3}$ in spring and 35.8 and $73.4{\mu}g\;m^{-3}$ in fall-winter during the sampling period of 2005, while measurements of 69.8 and 9.9 were obtained in the sampling period of summer, The size distribution of particulate mass concentration during the non-Asian dust period was generally bimodal, whereas the size distribution of particulate mass concentration during the Asian dust period was unimodal due to the significant increase of coarse particles, which originated from long-range transport of soil dust particles from loess regions of the Asian continent. Among ionic species, $SO{_4}^{2-},\;NH{_4}^+,\;K^+$ were mainly distributed in fine particles due to their characteristics of emission sources and gas-to-particle conversion, while $Na^+,\;Mg^{2+}\;and\;Ca^{2+}$ were dominantly in coarse particles. However, $NO_3{^-}\;and\;Cl^-$ were distributed in both coarse particles and fine particles. Although $SO{_4}^{2-}$ was mainly distributed in fine particles, the size distributions of $SO{_4}^{2-}$ in coarse mode were significantly increased during the Asian dust events compared to those during the non-Asian dust period. $Ca^{2+}$ showed the most abundant species in the atmospheric particles during the Asian dust period. $NH{_4}^+$ was found to mainly exist as $(NH_4)_2SO_4$ in fine particles.

Evaluation of Maximum Shear Modulus of Silty Sand in Songdo Area in the West Coast of Korea Using Various Testing Methods (다양한 시험 방법을 이용한 서해안 송도 지역에 분포하는 실트질 모래의 최대 전단탄성계수 평가)

  • Jung Young-Hoon;Lee Kang-Won;Kim Myoung-Mo;Kwon Hyung-Min;Chung Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.65-75
    • /
    • 2005
  • Maximum shear modulus of soil is a principal parameter for the design of earth structures under static and dynamic loads. In this study, the statistical data of maximum shear moduli of silty sands in Songdo area in the west coast of Korea evaluated by various field and laboratory tests - standard penetration test (SPT), cone penetration test (CPT), self-boring pressuremeter test (SBPT), downhole test (DH), seismic cone penetration test (SCPT) and resonant column test (RC) were analyzed. Based on the measurement of shear moduli using DH which is known as maximum value at very small strain, the new empirical correlations between shear moduli and SPT or CPT values were proposed. Predictions of maximum shear moduli using the proposed correlations were compared with the data obtained from DH. The good agreement confirmed that the proposed correlations reasonably predicted the maximum shear moduli of silty sands in the area.

Biodegradation of Diesel in Sea Water by Rhodococcus fascians Isolated from a Petroleum-contaminated Site (유류 오염 토양에서 분리된 Rhodococcus fascians를 이용한 해수에서의 디젤유의 분해)

  • Koo, Ja-Ryong;Moon, Jun-Hyung;Yun, Hyun-Shik
    • KSBB Journal
    • /
    • v.24 no.5
    • /
    • pp.453-457
    • /
    • 2009
  • Contamination of marine environment with hazardous and toxic chemicals is more common these days. Bioremediation is the application of microorganism or microbial processes to degrade environmental contaminant. Because of low water solubility and volatility of diesel, bioremediation is more efficient than physical and chemical methods. The objective of this study is biodegradation of diesel in sea water by using Rhodococcus fascians which is isolated petroleum-contaminated soil. R. fascians was cultured on sea water containing diesel to determine the diesel degradability. Changes in biodegradability of diesel with various inoculum sizes, diesel concentrations, initial pH, and culture temperature were analyzed by TPH analysis using gas chromatography. The inoculum size 2% was effective for biodegrdation of diesel in sea water by R. fascians. When diesel concentration was 5%, the growth of cell was inhibited by the toxicity of diesel. The optimal temperature and initial pH for degradation of diesel in sea water were $27^{\circ}C$ and pH 8.

Determination of personal care products in aquatic environmental samples by GC/MS (GC/MS를 이용한 수질환경시료 중 personal care products의 분석)

  • Lee, In-Jung;Lee, Chul-Gu;Heo, Seong-Nam;Lee, Jae-Gwan
    • Analytical Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.477-484
    • /
    • 2010
  • Personal care products are a diverse group of synthetic organic chemicals such as antimicrobial compounds, UV filters and organo-phosphate flame retardants and derived from individual usages of soaps, toothpaste and cosmetics. It has been detected in municipal sewage effluent and various environmental samples such as surface water, marine, soil, sediment and aquatic biota in many countries. The occurrence of personal care products in environmental samples could negatively impact the health of the ecosystem and humans, due to persistent, long-term chronic exposure of aquatic organisms. In this study, fifteen personal care products in aquatic environmental samples were determined by gas chromatography-mass spectrometry (GC-MS) with liquidliquid extraction (LLE). Method detection limits were in the range of $0.004\sim0.273\;{\mu}g/L$. Two compounds (TCEP, TCPP) were detected in surface waters and seven compounds (triclosan, 4-MBC, EHMC, BP-3, TCEP, TPP, TBEP) were detected in sewage treatment plants (STP) influents or effluents.

The γ-Benzenehexachloride Degradation Using Transgenic Tobacco Plant (담배 형질전환 식물체를 이용한 γ-Benzenehexachloride의 분해)

  • Lee, Jeong-Kyung;Park, Soon-Ki;Chung, Il-Kyung
    • Journal of Plant Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.103-108
    • /
    • 2003
  • LinA gene involving in the ${\gamma}$-benzenehexachloride degradation have been cloned from Sphingmonas paucimobilis UT26. This linA gene which catalyzes the first dechlorination step of ${\gamma}$-benzenehexachloride is known to play a key role in the ${\gamma}$-benzenehexachloride degradation pathway in UT26. In this study, the linA gene was designed to clean-up the ${\gamma}$-benzenehexachloride and its derivatives contaminated in soil, water and air using transgenic tobacco plants. The linA transgene was introduced into the chromosome of tobacco using leaf-disk transformation approach as revealed by Southern blot analysis. In addition, mRNA and protein produced by linA gene was expressed at a high level in the leaf tissue as demonstrated by both northern blot analysis and Western bolt analysis with polyclonal antibody against S. paucimobilis UT26. in vitro analysis using GC-MS showed that transgenic tobacco plant produced the linA protein which effectively degraded ${\gamma}$-benzenehexachloride into ${\gamma}$- pentachlorocyclohexene and 1,2,4-trichlobenzene compounds which are less toxic.

Effects of Restricted Oxygen, Nitric oxide, and Mercuric Chloride on the Seed Germination and Early Elongation Growth of Rice

  • Yang Woon-Ho;Kim Je-Kyu;Smucker Alvin J.M.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.4
    • /
    • pp.287-294
    • /
    • 2006
  • Germination and early elongation of rice after germination were investigated in anoxic air treatment, nitric oxide gas treatment, and six concentrations of mercuric chloride solutions to determine the effects of limited oxygen environment, nitric oxide, and inhibited water flux through cell membrane in $17^{\circ}C$. Anoxic air treatment affected germination of tested six varieties very little. However root elongation rates were severely inhibited while shoot growth was affected less. Reductions in shoot and root elongations demonstrated genotypic variations. Nitric oxide delayed the germination of rice even though it didn't affect the final percent germination. Elongations of root and shoot were inhibited in nitric oxide treatment. The inhibitor effect of nitric oxide on the shoot elongation of rice was less severe, while nitric oxide completely inhibited the root emergence of rice. Concentrations of $HgCl_2$ greater than $300{\mu}M$ dramatically reduced the rate and percentage of germination when compared to distilled water treatment. The reduced percent germination showed the greatest variation among rice varieties in $500{\mu}M$ solution of mercuric chloride. Ansanbyeo, Jinheung, and Odaebyeo were affected less by $HgCl_2$, Nonganbyeo and Sangmibyeo were intermediate, and the germination of Andabyeo was greatly reduced by $HgCl_2$. Root elongation of germinated rice seedlings was more sensitive to oxygen deficits, nitric oxide, and $HgCl_2$ treatments than germination and shoot elongation. In conclusion, poor seedling establishment of rice sown in flooded paddy soils, in which the oxygen supply to the seeds is restricted, appears to the result of limited root elongation rate.

Isolation and Characterization of Odor Treatment Bacteria (악취제거용 균주의 분리 및 특성)

  • Jeong Gwi-Taek;Lee Gwang-Yeon;Lee Kyoung-Min;Lee Hye-Jin;Ryu Hwa-Won;Kim Doman;Chough Sung-Hyo;Kim Si-Wouk;Cha Jin-Myoung;Jang Young-Seon;Park Don-Hee
    • KSBB Journal
    • /
    • v.20 no.5 s.94
    • /
    • pp.345-349
    • /
    • 2005
  • The microorganism for odor gas removal was isolated from sewage and contaminated soil. This was characterized as Pseudomonas sp. TKC by morphological, biochemical/physiological, and cultural characteristics analysis of the isolates. The optimum conditions for isolates growth were as follows; substrate concentration 500 ppm, initial medium pH 7.0, incubation temperature $30^{\circ}C$, agitation speed 150 rpm, and MSM medium containing 3 g/L $(NH_4)_2SO_4$.

Low-Oxygen Atmosphere and its Predictors among Agricultural Shallow Wells in Northern Thailand

  • Wuthichotwanichgij, Gobchok;Geater, Alan F.
    • Safety and Health at Work
    • /
    • v.6 no.1
    • /
    • pp.18-24
    • /
    • 2015
  • Background: In 2006, three farmers died at the bottom of an agricultural shallow well where the atmosphere contained only 6% oxygen. This study aimed to document the variability of levels of oxygen and selected hazardous gases in the atmosphere of wells, and to identify ambient conditions associated with the low-oxygen situation. Methods: A cross-sectional survey, conducted in June 2007 and July 2007, measured the levels of oxygen, carbon monoxide, hydrogen sulfide, and explosive gas (percentage of lower explosive limit) at different depths of the atmosphere inside 253 wells in Kamphaengphet and Phitsanulok provinces. Ambient conditions and well use by farmers were recorded. Carbon dioxide was measured in a subset of wells. Variables independently associated with low-oxygen condition (<19.5%) were identified using multivariate logistic regression. Results: One in five agricultural shallow wells had a low-oxygen status, with oxygen concentration decreasing with increasing depth within the well. The deepest-depth oxygen reading ranged from 0.0% to 20.9%. Low levels of other hazardous gases were detected in a small number of wells. The low-oxygen status was independently associated with the depth of the atmosphere column to the water surface [odds ratio (OR) = 13.5 for 8-11 m vs. <6 m], depth of water (OR = 0.17 for 3-<8 m vs. 0-1 m), well cover (OR = 3.95), time elapsed since the last rainfall (OR = 7.44 for >2 days vs. <1 day), and location of well in sandy soil (OR = 3.72). Among 11 wells tested, carbon dioxide was detected in high concentration (>25,000 ppm) in seven wells with a low oxygen level. Conclusion: Oxygen concentrations in the wells vary widely even within a small area and decrease with increasing depth.