• Title/Summary/Keyword: soil electrical conductivity

Search Result 415, Processing Time 0.026 seconds

Multi-sensor monitoring for temperature stress evaluation of broccoli (Brassica oleracea var. italica) (브로콜리(Brassica oleracea var. italica)의 온도 스트레스 평가를 위한 다중 센서 모니터링)

  • Cha, Seung-Ju;Park, Hyun Jun;Lee, Joo-Kyung;Kwon, Seon-Ju;Jee, Hyo-Kyung;Baek, Hyun;Kim, Han-Na;Park, Jin Hee
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.347-355
    • /
    • 2020
  • Several sensors have been developed for soil and plants to assess plant stress due to climate change. Therefore, the objective of the study is to nondestructively evaluate temperature stress on plant by monitoring climatic and soil conditions and plant responses using various sensors. Plant responses were monitored by electrical conductivity in plant stem and sap flow rate. Electrical conductivity in plant stem reflects the physiological activity of plants including water and ion transport. Fully grown Brassica oleracea var. italica was exposed to 20/15 ℃ (day/night) with 16 h photoperiods as a control, low temperature 15/10 ℃, and high temperature 35/30 ℃ while climatic, soil, and plant conditions were monitored. Electrical conductivity in plant stem and sap flow rate increased during the day and decreased at night. Under low temperature stress, electrical conductivity in plant stem of Brassica oleracea var. italica was lower than control while under high temperature stress, it was higher than control indicating that water and ion transport was affected. However, chlorophyll a and b increased in leaves subjected to low temperature stress and there was no significant difference between high temperature stressed leaves and control. Free proline contents in the leaves did not increase under low temperature stress, but increased under high temperature stress. Proline synthesis in plant is a defense mechanism under environmental stress. Therefore, Brassica oleracea var. Italica appears to be more susceptible to high temperature stress than low temperature.

Effect of Desalinization on Early Seedling Growth of Winter Barley in New Tideland (신간탁지 토양의 제염이 보리의 초기생육에 미치는 영향)

  • 이강수;최선영;최원열
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.1
    • /
    • pp.112-118
    • /
    • 1997
  • This study was conducted to obtain basic information on the desalinization in newly reclaimed tideland. A desalinization experiment with leaching method was carried out using the soil samples collected in Haenam tideland, and the early growth response of winter barley to salt stress during the desalinization was investigated by measuring emergence rate, plant height, leaf area and fresh weight. The soil in Haenam tideland was saline-sodic with 59mS / cm of electrical conductivity and pH 8.0, and the soil texture was silty loam with 16% clay and 75% silt. Depth of water for desalinization(DWD) to decrease the electrical conductivity below 4mS /cm was 140mm in 5cm depth soil and 240mm in 20cm depth soil. The value of pH of soil and leaching water increased from 8.0 to 8.3 until the electrical conductivity decreased to about 6mS / cm during the desalinization. .The emergence rate of winter barley was over 75% in the DWD above 80mm and showed no significant difference with the DWD. The DWD for the normal growth of winter barley seedling was above 120mm at 1 and 2 weeks after sowing(WAS), and above 160mm at 3 and 4 WAS. The leaf area and fresh weight showed no response for salt stress with the DWD above 12mm at 2 WAS, and above 16mm at 3 WAS. It was estimated that the electrical conductivity of soil saturation extract for the normal growth of winter barley during early seedling growth stage in new reclaimed tideland would be below 9mS / cm in 20cm depth soil.

  • PDF

A Study on the Measurement of Volumetric Water Content Using WCR in Final Cover Layer of Landfill (Water Content Reflectometer(WCR)을 이용한 매립지반 최종 복토층의 체적 함수비 측정에 관한 연구)

  • Kim Kyung-Chul;Hwang Koou-Ho;Lee Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.147-154
    • /
    • 2005
  • This study deals with the calibration of low-frequency water content reflectometer for measuring the volumetric water content of soils in landfill final cover layer, and the validity of calibrations was evaluated by electrical conductivity and index properties of the soils. Linear calibrations concerning volumetric water content to WCR period provided good agreement with the data. Analysis of the calibration data indicates that the slope of the calibration decreases as the electrical conductivity of the soil increases. Lower slopes correspond to soils with greater clay content, organic content, liquid limit, and plasticity index, which typically have higher electrical conductivity. It could be well explained that WCR can operate in a lower frequency range.

Numerical Calculation for Impedance of Horizontal Ground Electrode for Information and Communication Facilities with Considering Characteristics of Permittivity in Soil (토양의 유전율 특성을 고려한 정보통신설비용 수평접지전극의 임피던스 계산)

  • Ahn, Chang-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.245-251
    • /
    • 2013
  • An impedance of ground electrode for information and communication facilities has a significant relationship with the electrical characteristics of soil where the ground electrode is buried. Especially, the impedance of ground electrode is directly affected by the characteristics of permittivity and conductivity in soil as a function of a frequency of an applied electric field. The program based on the electromagnetic field model was developed in MATLAB. Because both permittivity and conductivity can not be modified in commercial programs. The permittivity of soil was applied with the Debye equation which is a model of dielectric relaxation. And the empirical equation of the conductivity in soil was quoted in other paper. In order to confirm the reliability of proposed program, the impedance measurement of ground electrode was carried out, which were compared with the results of simulation in commercial program. In result, it was confirmed that the impedance and phase different simulated by appling the characteristics of permittivity and conductivity in soil are in good agreement with the measured values than results of NEC.

Electrical and Hydraulic Characteristics of An Alluvial Bed under the Influence of Pumping and Rainfall

  • Woo-Ri Lim;Nam-Hoon Kim;Samgyu Park;Jae-Yeol Cheong;Se-Yeong Hamm
    • Journal of the Korean earth science society
    • /
    • v.45 no.4
    • /
    • pp.363-376
    • /
    • 2024
  • Alluvial beds are intimately associated with electrical properties related to soil types, including clay mineral content, porosity, and water content. The hydraulic property governs water movement and storage in alluvial beds. This study revealed electrical resistivity and hydraulic properties in space and time in relation to the hydrogeological data, groundwater pumping, and rainfall infiltration into the alluvial bed located in Daesan-myeon, Changwon City. An electrical resistivity survey with electrode spacings of 2 and 4m using a dipole-dipole array indicates that electrical resistivity changes in the alluvial bed depend on groundwater pumping and rainfall events. Additionally, rainfall infiltration varies with hydraulic conductivity in the shallow zone of the alluvial bed. The 2 m electrode spacing survey confirms that electrical resistivity values decrease at shallow depths, corresponding with rainfall and increased water content in the soil, indicating rainfall infiltration approximately 1-2 m below the land surface. The 4m electrode spacing survey reveals that hydraulic conductivity (K) values and electrical resistivity (ρ) values display an inverse relationship from the surface to the water table (approximately 9 m) and at deeper levels than the water table. Notably, ρ values are impacted by pumping around the depth of the water table at 9 m. This study suggests that time-lapsed electrical resistivity surveys in space and time could be effective tools for detecting the impact of rainfall and pumping, as well as hydraulic conductivity in shallow alluvial beds.

Analysis of Desalinization Effects ofn Gypsum Treatments in Reclaimed Tidelands (석고처리에 의한 간척지토양의 제염효과 분석)

  • 구자웅;최진규;손재권;이기성
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.162-168
    • /
    • 1999
  • This study was performed to analyze dealinization effects on gypsum treatments in reclaimed tidelands and to obtain the basci data for developing prediction techniques f desalinization to be applicable in the begining of tideland reclamation. In this study , the reclamation experiments with 4 treatments were conducted through the leachig method, using the samples of silt soil and silt loam soil collected in 5 units of tideland reclamation projects. The electrical conductivity , exchangeable sodium percentage and hydraulic conductivity were analyzed in order to investigate the effects of desalinizatino for reclaiming the tidelands with high salt concentration.

  • PDF

Elution Patterns and Hydraulic Conductivity Depending on the Incorporated Organic Matter Contents in a Multi-Layered Soil Column (토양내 유기물 함량 변화에 따른 다층 토주의 수리전도도 및 용출 경향)

  • Chung, Doug Young
    • Korean Journal of Agricultural Science
    • /
    • v.27 no.2
    • /
    • pp.125-134
    • /
    • 2000
  • This observation was to investigate the influence of raw organic matter incorporated into soil at various rates on hydraulic conductivity and elution of solute throughout soil column. Generally the organic matter content in a practical agricultural field was approximately 3%. However, the application rate of organic matter in the field tends to rapidly increase in these days. Therefore, we raised the application rate of organic matter up to 10% in this investigation. From the experiment, we found that the hydraulic conductivities rapidly decreased with increasing rate of organic matter as well as rapid decrease in total volume of eluent during the same period. And electrical conductivities in the effluent significantly decreased after 2 pore volume, resulting in approaching to the criteria of saline soli. From this we could assume that the organic matter may influence the crop growth in the beginning. However excessive irrigation in the field may cause saturation of soil leading to reduction of soil. Therefore, there must be a management methods in application of organic matter with respect to soil water control.

  • PDF

Feasibility Study on the Applicability of Fly Ash as a Barrier Material in Containment System

  • Myung Dong-Il;Lee Gwang-Hun;Lee Seung-Hak;Park Jun-Boum;Kim Hyung-Suk
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.202-210
    • /
    • 2005
  • In this study, the fly ash was employed as a possible alternative to the bentonite for its high sorption capacity against cationic heavy metal. To consider the constituents of barrier possibly used, the specimens were mixed with different material contents (fly ash : weathered soil : bentonite), then sorption test was performed. Also the specimens were molded on the wet side of optimum moisture contents like mixing ratio of sorption test and their hydraulic conductivities were measured in flexible-wall permeameters. And to confirm the effect of dissolved cations, the hydraulic conductivity tests were repeated by converting the permeant liquids from water to $Cd^{2+}$ solution. Finally, the Cd-concentration at the effluent was analyzed for 500hrs to compare the effectiveness of each specimen in contaminant retardation. Test results showed that the more the ratio of fly ash increase, the more Kd value increase, and the hydraulic conductivity of weathered soil/bentonite (95:5) mixture was the lowest $(2.9*10^{-8}cm/sec)$, and specimens made of fly ash and fly ash/weathered soil mixtures showed similar hydraulic conductivity. Although the permeant liquid was changed from water to $Cd^{2+}$ solution, the hydraulic conductivity of all specimens except for weathered soil maintained similarly like before. Consequently, the initial breakthrough point of Cd in weathered soil specimen was observed at about 5hrs after the test started while that of fly ash specimens was not observed during the whole test period of 500hrs. The results implied that fly ash had a sufficient retardation capacity against contaminant transport possibly by its high sorption capacity although it showed little effect on the reduction of hydraulic conductivity. Based on the test results, it could be concluded that the fly ash can be possibly used as a suitable barrier material in containment system to attenuate the contaminant transport for its high retardation capacity and for the low cost.

  • PDF

Enhancement of Soil Physicochemical Properties by Blending Sand with Super Absorbent Polymers of Different Swelling Capacities (팽윤 능력이 다른 고흡수성수지(Super Absorbent Polymers)의 혼합 비율별 모래 토양의 물리화학성 변화)

  • Young-Sun Kim;Tae-Wooung Kim;Yun-Seob Kim;Yang-Ho Na;Geung-Joo Lee
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Super absorbent polymers (SAPs) are hydrophilic molecules that can absorb large amounts of water. This study was conducted to investigate the enhancement of the physicochemical properties of sand soil blended with three SAPs imbibed with 100, 150, and 200-fold water. Three treatments were applied, namely, 100SAP, 150SAP, and 200SAP. The three SAPs were blended at concentrations of 0% (control), 3%, 5%, 7%, and 10% with sand. The pH, electrical conductivity, and cation exchangeable capacity (CEC) of soil blended with the three SAPs were pH 6.35-6.46, 0.09-0.65 dS/m, and 1.42-1.92 cmolc/kg, respectively, and their capillary porosity, total porosity, and saturated hydraulic conductivity were 21.0-29.3%, 39.2-48.7%, and 272-470 mm/hr. CEC, capillary porosity, total porosity, and saturated hydraulic conductivity of soil were positively correlated with the ratio of the SAPs (p<0.01). These results indicate that blending sand soil with SAPs increased CEC, capillary porosity, and saturated hydraulic conductivity, thus improving the nutrient-retention capacity, water-retention capacity, and permeability of the soil.

The Comparison of Electrical Conductivity for Soil Solutions Extracted in Field Capacity and Saturation-Paste (포장용수량과 포화 반죽 토양용액의 전기전도도 비교)

  • Lee, Ye-Jin;Lee, Jong-Sik;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.776-781
    • /
    • 2010
  • Estimating the electrical conductivity of the saturation-paste (SP) is a common method to assess soil salinity. To assess soil salinity realistically, it is important to extract soil solution under field capacity. However, few studies on salinity assessment have been conducted for soil solution extracted under field capacity (-33 kPa; FC) moisture condition due to difficulty in soil solution extraction. This study was conducted to evaluate whether saturation-paste can represent field condition. Soil solutions were extracted from 22 soils in the plastic film house (PFH) and 18 soils in the reclaimed land (RL) at saturation and field capacity moisture conditions. Those were analyzed for pH, EC, cations ($K^+$, $Ca^{2+}$, $Mg^{2+}$, $Na^+$) and anions ($Cl^-$, ${NO_3}^-$, ${PO_4}^{3-}$, ${SO_4}^{2-}$). Both cations and anions of soil solution extracted from FC showed high correlations with ions extracted from SP in the PFH and the RL, except for ${NO_3}^-$, ${PO_4}^{3-}$ in the RL. Results of the t-test, the ECe and $EC_{FC}$ were not significant at significance level 0.05. The slopes of the equations between $EC_{FC}$ and ECe at more than sand 50% soils were higher than less than sand 50% soils, and differences of saturation percentage between SP and FC showed larger as increasing sand percentage. EC was related to soil water retention by soil texture. To determine the EC, soil texture and other soil properties which effect the soil moisture should be considered.