• Title/Summary/Keyword: soil effect

Search Result 6,291, Processing Time 0.042 seconds

Effect of Root Zone Warming by Hot Water on Fruit Characteristics and Yield of Greenhouse- Grown Oriental Melon (Cucumis melo L.) (온수 지중가온이 참외의 과실특성 및 수량에 미치는 영향)

  • 신용습;이우승;연일권;최성국;최부술
    • Journal of Bio-Environment Control
    • /
    • v.6 no.2
    • /
    • pp.110-116
    • /
    • 1997
  • This experiment was conducted to investigate the effects of root zone warming on fruit yield of oriental melon (Cucumis melo L. var. Makuwa) in winter season. Root zone was warmed by hot water flowing through pipe set at 35cm depth from the ridge. Treatments of minimum soil temperature at 20cm depth were 17, 21, $25^{\circ}C$ and non-warming from Jan. 18 to Apr. 18. The results are summarized as follows. 1. The blooming of female flower was faster 1 days in 17$^{\circ}C$ plot, 6 days in 21$^{\circ}C$ plot, and 7 days in $25^{\circ}C$ plot than in control plot and the days from blooming to harvesting were shorter 5 days in 17$^{\circ}C$ plot, 11 days in 21$^{\circ}C$ plot, and 12 days in $25^{\circ}C$ plot than in control plot. 2. Mean fruit weight was the highest in 21$^{\circ}C$ plot, followed $25^{\circ}C$, 17$^{\circ}C$ and control plots, respectively, and flesh thickness was the highest in $25^{\circ}C$ plot, followed by 21, 17$^{\circ}C$ and control plots, respectively. 3. Early and middle-phase yield was the highest in $25^{\circ}C$ plot, followed by 21$^{\circ}C$, 17$^{\circ}C$ and control plots but late yield was the highest in 17$^{\circ}C$ plot, followed by control, 21, and $25^{\circ}C$ plots. Total yield per 10a was higher 33% in 17$^{\circ}C$ plot, 49% in 21$^{\circ}C$ plot, and 37a in $25^{\circ}C$ plots than in control plot, harvested 1, 490kg per 10a. 4. Total yield was highest in 21$^{\circ}C$ plot, followed by $25^{\circ}C$, 17$^{\circ}C$, and control plots. Malformed and fermented fruit rates were the highest in control, followed by 17, 25, and 21$^{\circ}C$ plots and marketable fruit rate was 21, 25, 17$^{\circ}C$, and control plot in order.

  • PDF

A Study on the Plant Planning in Landscape Space Considering the Characteristics of the Gender Determination of Pine Tree (소나무 성 결정 요인의 특성을 고려한 조경공간 식재계획)

  • Lee, Chang-Hun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.1
    • /
    • pp.45-52
    • /
    • 2020
  • This study analyzed the components contained in the pine needles of first and second-year-olds to analyze the factors that the in vivo content of inorganic elements affects the sex determination of pine trees. In response, the plan for pine tree plant and maintenance was intended to be presented in consideration of the reproductive environment and physiological characteristics. The results are as follows. First, last year, when there were many encyclopedias, the analyzed N(%) content was found to be high. The nitrogen content of the previous year's soil was found to affect the production of the spheres the following year. This is believed to be possible to reduce the rate of Pine pollen produced in the new plant in the following year through a dispute over quality consumption in the spring of the previous year. Second, the weapons elements involved in the Pine cones and the generation of the Pine pollen in the new plant appeared to be P(%), K(%), Ca(%), and Fe(%). However, the nutrients from the previous year's leaves of Ca(%) and Fe(%) were found to have a low influence on the sex determination of first-year pine trees. Because Ca(%) and Fe(%) are not able to move nutrients accumulated in aging organs due to the nature of the components, feeding nutrients in the fall when the growth of the previous year's branches is reduced is expected to affect oral generation. Third, pine trees are extremely positive and Pine pollen is related to the time of the northeast wind. Therefore, it is believed that it would be good to be located in the northern direction, where the sunlight is good, in an outdoor space. In addition, it is important to use vaginal consumer products in spring and carry out a quarrel involving Mg and Fe during fall to reduce the effect of the Pine pollen, which is an outdoor plant. This is an important part of maintaining and managing pine trees in outdoor spaces as well as the sex determination of pine trees. This study suggested that plant planning, which derives the correlation between pine inorganic element content on sexual determination and takes into account the physiological characteristics of pine trees, is an important issue in the creation of outdoor space. Follow-up research on other factors affecting pine tree sex determination is expected.

Lessons from Cross-Scale Studies of Water and Carbon Cycles in the Gwangneung Forest Catchment in a Complex Landscape of Monsoon Korea (몬순기후와 복잡지형의 특성을 갖는 광릉 산림유역의 물과 탄소순환에 대한 교차규모 연구로부터의 교훈)

  • Lee, Dong-Ho;Kim, Joon;Kim, Su-Jin;Moon, Sang-Ki;Lee, Jae-Seok;Lim, Jong-Hwan;Son, Yow-Han;Kang, Sin-Kyu;Kim, Sang-Hyun;Kim, Kyong-Ha;Woo, Nam-Chil;Lee, Bu-Yong;Kim, Sung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.149-160
    • /
    • 2007
  • KoFlux Gwangneung Supersite comprises complex topography and diverse vegetation types (and structures), which necessitate complementary multi-disciplinary measurements to understand energy and matter exchange. Here, we report the results of this ongoing research with special focuses on carbon/water budgets in Gwangneung forest, implications of inter-dependency between water and carbon cycles, and the importance of hydrology in carbon cycling under monsoon climate. Comprehensive biometric and chamber measurements indicated the mean annual net ecosystem productivity (NEP) of this forest to be ${\sim}2.6\;t\;C\;ha^{-1}y^{-1}$. In conjunction with the tower flux measurement, the preliminary carbon budget suggests the Gwangneung forest to be an important sink for atmospheric $CO_2$. The catchment scale water budget indicated that $30\sim40%$ of annual precipitation was apportioned to evapotranspiration (ET). The growing season average of the water use efficiency (WUE), determined from leaf carbon isotope ratios of representative tree species, was about $12{\mu}mol\;CO_2/mmol\;H_2O$ with noticeable seasonal variations. Such information on ET and WUE can be used to constrain the catchment scale carbon uptake. Inter-annual variations in tree ring growth and soil respiration rates correlated with the magnitude and the pattern of precipitation during the growing season, which requires further investigation of the effect of a monsoon climate on the catchment carbon cycle. Additionally, we examine whether structural and functional units exist in this catchment by characterizing the spatial heterogeneity of the study site, which will provide the linkage between different spatial and temporal scale measurements.

An Outlook on Cereal Grains Production in South Korea Based on Crop Growth Simulation under the RCP8.5 Climate Change Scenarios (RCP8.5 기후조건의 작물생육모의에 근거한 우리나라 곡물생산 전망)

  • Kim, Dae-Jun;Kim, Soo-Ock;Moon, Kyung-Hwan;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.3
    • /
    • pp.132-141
    • /
    • 2012
  • Climate change impact assessment of cereal crop production in South Korea was performed using land attributes and daily weather data at a farm scale as inputs to crop models. Farmlands in South Korea were grouped into 68 crop-simulation zone units (CZU) based on major mountains and rivers as well as existing land use information. Daily weather data at a 1-km grid spacing under the A1B- and RCP8.5 scenarios were generated stochastically to obtain decadal mean of daily data. These data were registered to the farmland grid cells and spatially averaged to represent climate conditions in each CZU. Monthly climate data for each decade in 2001~2100 were transformed to 30 sets of daily weather data for each CZU by using a stochastic weather generator. Soil data and crop management information for 68 CZU were used as inputs to the CERES-rice, CERE-barley and CROPGRO-soybean models calibrated to represent the genetic features of major domestic cultivars in South Korea. Results from the models suggested that the heading or flowering of rice, winter barley and soybean could be accelerated in the future. The grain-fill period of winter barley could be extended, resulting in much higher yield of winter barley in most CZUs than that of rice. Among the three major cereal grain crops in Korea, rice seems most vulnerable to negative impact of climate change, while little impact of climate change is expected on soybeans. Because a positive effect of climate change is projected for winter barley, policy in agricultural production should pay more attention to facilitate winter barley production as an adaptation strategy for the national food security.

Investigation of Nutrient Release from the Sediments Near Weir in the Namhan River (남한강 보 구간 퇴적물의 영양염류 용출에 관한 연구)

  • Kim, Hye Yeon;Huh, In Ae;Choi, Jung Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.8
    • /
    • pp.554-563
    • /
    • 2013
  • The purpose of this study is to evaluate the possibility of nutrient release at up and downstream of Kangchun weir, upstream of Yuju and Ipo weir in Namhan River. For this survey, we measured basic characteristics of the sediments (water content, ignition loss, TOC, TP, SRP, TN, phosphorus fractionation) and conducted nutrients release experiments under both aerobic and anaerobic condition. The overlying water from the sediment-water column was analyzed for nutrients (i.e. TP, $PO_4$-P, TN, $NO_3$-N, $NH_3$-N) everyday for 18days. Result of soil texture experiment showed that sediments are Sand. SRP concentration before the release experiment was different with the value after the release experiment. According to this result, we can find that there were more activated release processes in anaerobic condition. $PO_4$-P increased from 1 to 8 days and remained at the maximum value (7~8 days) afterward. The rapidly increase of $PO_4$-P was observed from 1 to 2~3 days whereas the TP continuously increase from 1 to 18 days. The $PO_4$-P release rate calculated by up to 7~8 days data highly correlated with initial SRP concentration with $R^2$=0.8502. $NO_3$-N release rate appears constantly decreasing trend as -5.7~-3.08 $mg/m^2{\cdot}day$, otherwise the $NH_3$-N release rate, by-product of a organic matter decomposition using nitrate as electron acceptor, was 0.57~2.41 $mg/m^2{\cdot}day$. Substantial portion in TN can be induced by organic nitrogen which originated from the tributary passing through non-point pollutant source. Compared with other similar researches, phosphorus and nitrogen release rates obtained in this study can be considered as relatively low values. Since this study targeted the sediments accumulated by one time of flooding season, there are limitation to generalize theses results. Therefore, it is necessary to consistently monitor and investigate the accumulation of nutrients in the sediment for understanding the effect of weir construction on the overlying water quality.

Effects of Seed Coating and Molding on Seed Germination and Seedling Growth of Rehabilitating Plants in Forest Road Slopes (임도 비탈면 녹화식물의 종자피복 및 복토처리가 발아와 생장에 미치는 영향)

  • Lee, Byung-Tae;Park, Chong-Min
    • Korean Journal of Environment and Ecology
    • /
    • v.20 no.4
    • /
    • pp.436-447
    • /
    • 2006
  • Recently, there is increasing demand on enhancing the efficiency of hydro-seed spraying in afforestation for damaged or degraded land including forest road slopes. In this study, we focus on how seed coating and molding may affect seed germination and seedling growth. Plant species used in the study are Lespedeza cyrtobotrya, Indigofera pseudotinctoria, Arudineila hirta, Poa pratensis, and Lolium perenne. The results of seed germination and seedling growth with and without seed coating and molding are analyzed as follows: 1. For all the species and in both seeding with molding covered with soil and seeding without molding in which seeds were over sown, the increment of germination ratio by seed coating method is greater than by non·coating one. Seed coating increases average germination ratios observed in seeding with molding and without molding by 11.2% and 21.4%, respectively. Germination force may decrease from 0.8 to 3.7 days depending on the plant species and the treatments. The $LD_{50}$ decreased by $0.8{\sim}2.6$ days. However, seed coating delays the start of germination by approximate 1 day for all of the observed plants. 2. Seed coating may have the effect of accelerating the growth of stem and leaf and root. The experimental result shows that seed coating leads to 21.7% and 34.8% increment of average stem and leaf growth by seeding with molding and without molding, respectively. In terms of root growth, seeding with molding results in 22.0% increment while seeding without molding produces 26.2% increased root growth. 3: Compared to seeding without molding, germination starts on an average of 1.3 days later in seeding coated seeds with molding. However. the germination ratio is increased by 5%, and germination force and $LD_{50}$ are observed to shorten by 1.0 day and 1.4 days, respectively. Meanwhile, whether seeds are coated or not may be more related with germination and seedling growth in seeding without molding than with those in seeding with molding. 4. In this study, coating materials are examined to look at which ones are better in each treatment. Coating with Vermiculite+Talcum is the most effective in germination and seedling growth for overall plants. Seed coating using Bentonite, Calcium Carbonate, and Calcium Hydroxide shows better results than non-coating does. 5. When seeds are coated, the greatest enhancement of seed germinations was observed in Indigofera pseudotinctoria and, in the case of seedling growth, Lespedeza cyrtobotrya has the most increasing observation value among the 5 examined species. These results may indicate that woody plant seeds, having greater sizes of seeds than ones of grass seeds, may have greater relation with seed coating than grass plant seeds may have. 6. Therefore, if seeds cannot be molded up after hydro-seeding on forest road slopes, it is recommended that seeds for restoration be pre-coated with Vermiculite+Talcum and then be sowed, in order to quickly stabilize the damaged slope and achieve successful afforestation.

Gibberellin Application Method and Concentration Affect to Growth, Runner, and Daughter Plant Production in 'Maehyang' Strawberry during Nursery Period (육묘기 '매향' 딸기의 생육, 런너 및 자묘 생산에 미치는 지베렐린 처리방법 및 농도의 영향)

  • Kang, Jae Hyeon;Kim, Hyeon Min;Kim, Hye Min;Jeong, Hyeon Woo;Lee, Hye Ri;Hwang, Hee Sung;Jeong, Byoung Ryong;Kang, Nam Jun;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.407-414
    • /
    • 2018
  • This study was aimed to evaluate the effect of application method and concentration of gibberellin $A_3$ ($GA_3$) on the growth, runner production, and seedling quality of strawberry plants (Fragaria ${\times}$ ananassa Duch. cv. Maehyang) during nursery period. The mother plants of strawberry were transplanted in pot ($64{\times}27{\times}18cm$) filled with commercial growing medium on March 20, 2018. $GA_3$ concentration was applied as 0, 50, 100 or $200mg{\cdot}L^{-1}$ with spray or drench to 45 mL per plant at 4 weeks after transplanting, respectively. Nutrient solution was supplied with the EC $1.5dS{\cdot}m^{-1}$ after the transplanting and supplied 350 mL per pot twice a day (15 min per one time) after rooting. The growth characteristics of mother plants of strawberry were measured at 7 weeks after treatment, and growth characteristics of daughter plants of strawberry were measured at 10 weeks after treatment. Runner length and diameter of mother plant was the longest or thickest in the spray with $200mg{\cdot}L^{-1}$ than the other treatments, respectively. Soil-plant analysis development (SPAD) value of mother plant was the lowest in spray with $200mg{\cdot}L^{-1}$. However, leaf length, leaf width, and crown diameter showed no significant differences in all treatment among application method and concentration of $GA_3$. As the concentration of $GA_3$ increased, physiological disorder like stretchiness of crown occurred more. The physiological disorder was the most occurred in spray treatment with $200mg{\cdot}L^{-1}$, but drench treatment occurred less than spray treatment. The number of runners and daughter plants increased with increasing concentration of $GA_3$ regardless of application methods. In the growth characteristics of the daughter plants, leaf length and leaf width of first daughter plant, plant height, crown diameter, leaf area and SPAD value of second daughter plant, and plant height of third daughter plant were the significantly greatest in drench with $100mg{\cdot}L^{-1}$ treatment. This results indicate that growth and runner production of mother plants and growth of daughter plants of strawberry were the best achieved by drench application in the $100mg{\cdot}L^{-1}$ $GA_3$.

Effect of Temperature and Various Pre-treatments on Germination of Hippophae rhamnoides Seeds (갈매보리수나무 종자의 온도 및 여러 가지 전처리에 따른 발아반응)

  • Choi, Chung-Ho
    • Korean Journal of Plant Resources
    • /
    • v.25 no.1
    • /
    • pp.132-141
    • /
    • 2012
  • This study was carried out to test seed germination responses to temperatures and pre-treatments in Hippophae rhamnoides, which has many abilities in antioxidant activity, soil improvement and erosion control. H. rhamnoides seeds were placed at 10, 15, 20, 25, 30 and $35^{\circ}C$ under light condition. As the results, germination percentage (GP) was the highest at 15 and $20^{\circ}C$, and mean germination time (MGT), germination rate (GR) and germination value (GV) were the highest at $25^{\circ}C$. Quadratic and linear regression model were used to determine the cardinal temperatures such as base ($T_b$), maximum ($T_m$) and optimum ($T_o$) temperature for germination. In quadratic regression model using PG, $T_b$, $T_m$ and $T_o$ was estimated as 0.6, 36.4 and $18.5^{\circ}C$, respectively, and temperature range for germination was $35.8^{\circ}C$. In linear regression model using GR, $T_b$, $T_m$ and $T_o$ was estimated as 8.3, 35.4 and $25.3^{\circ}C$, respectively, and temperature range for germination was $27.2^{\circ}C$. Germination properties were investigated after H. rhamnoides seeds were treated by prechilling (1, 2, 4, 6 and 8 weeks), stratification (2, 4, 6 and 8 weeks), solid matrix priming (seed : carrier : water = 5 : 1 : 7, 8, 9 and 10), osmo-priming (-0.25, -0.5, -1.0 and -1.5 MPa) and calcium chloride ($CaCl_2$) -priming (100, 200, 300 and 400 mM). The highest GP was observed in $CaCl_2$ 300 and 400 mM treatments, and MGT was the shortest in stratification 6 and 8 weeks treatments. GR and GV were the highest and GP was the second highest when seeds were prechilled for 1 and 2 weeks. Consequently, prechilling 1 or 2 weeks treatment was considered as the appropriate method when we contemplate qualitative and quantitative effects in seedling production.

Effects on Growth and Yield Whole-crop Barley by Soil-borne Virus Infection (토양 전염성 바이러스 감염이 청보리 품종별 생육 및 수량에 미치는 영향)

  • Kim, Kyeong-Hoon;Seo, Eun-Jo;Shin, Sang-Hyun;Choi, Jae-Seong;Lee, Mi-Ja;Park, Tae-Il;Park, Jong-Chul
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.3
    • /
    • pp.237-244
    • /
    • 2012
  • Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV) cause severe diseases in winter barley in Europe and East Asia. We investigated the effect of different level of resistance to virus disease on the plant growth and yield in whole-crop barley. In the virus infection, BaYMV was detected all tested cultivars in first diagnosis at 30th March. BaYMV infection was identified only in the susceptible Sunwoobori in 6th April, but not in the Yuyeon (moderate, M) and Youngyang (moderate resistant, MR) cultivars. Plant height was restrained about 14.6~32.9% in overwintered plant regeneration stage depending on the resistance of each cultivar. The tiller numbers also reduced to 8.7~19.7% by BaYMV infection in overwintering season. We evaluated culm length, spike length, and spike number in the virus-infected field and non-infected field. For the culm length, Youngyang (MR) reduced only 14.5% by BaYMV. However Sunwoo (susceptible, S) and Yuyeon (M) cultivars were decreased to 24.8~42.7%. The spike length and spike number also affected to 8.9~21.3% and 24.3~31.0%, respectively, depending on the resistance. After harvesting, dry-matter yield of whole crop yield reduced by approximately 21.6~58.0% according to cultivar resistant degrees. For example, Sunwoobori (S) decreased 58.0% in comparing to non-infected field. The grain yield was also significantly reduced in virus infected cultivars. Sunwoobori (S) was severely decrease more than 60.0%. Yuyeonbori (M) and Youngyangbori (MR) also decreased 30.0~47.5% by the viral infection comparing to those in the non-infected field.

Radon concentration measurement at general house in Pusan area (부산지역 일반주택에서의 라돈농도측정)

  • Im, In-Cheol
    • Journal of radiological science and technology
    • /
    • v.27 no.2
    • /
    • pp.29-33
    • /
    • 2004
  • Until early 1980s we have lived without thinking that radon ruins our health. But, scientists knew truth that radon radioactive danger is bedeviling on indoor that we live for a long time. Specially, interest about effect that get in danger and injury for Radon and human body is inactive in our country. Recently, with awareness for Radon contamination, We inform about importance and danger of Radon in some station of the Seoul subway, indoor air of school facilities and We had interest with measure and manages. Usually, Radon gas emitted in base of building enters into indoor through building floor split windage back among radon or indoor air of radon daughter nucleus contamination is increased. Therefore, indoor radon concentration rises as there are a lot of windages between number pipe of top and bottom and base that enter crack from estrangement of the done building floor, underground to indoor. Thus, Radon enters into indoor through architecture resources water as well as, kitchen natural gas for choice etc., but more than about 85% from earth's crust emit. Danger and injury of health by Radon and Radon daughter nucleus that is indicated for cause of lung cancer incerases content of uranium of soil rises specially from inside pit of High area and a mine, cave, hermetical space with house. Safe sub-officer of radon concentration can not know and danger always exists large or small during. So, Important thing reduces danger of lung cancer by lowering concentration of Radon within house and building. Therefore, is thought that need general house Radon concentration measurement, measured Radon concentration monthly using Sintillator radon monitor. Study finding appeared high all underground market 1 year than the ground, and the winter appeared high than the summer. Specially, month that pass over 4pCi in house that United States Environmental Protection Agency advises appeared in underground, and appeared and know Radon exposure gravity by 4 months during 12 months. Therefore, Thinking that establishment and regulation of norm and preparation of reduction countermeasure about Radon are pressing feels, and inform result that measure Radon concentration.

  • PDF