• Title/Summary/Keyword: soil depth(0-3,3-6 cm)

Search Result 314, Processing Time 0.024 seconds

Case study of good soil management in plastic film-house cultivation (시설하우스 재배농가의 우수토양관리 사례연구)

  • Hyun, Byung-Keun;Kim, Lee-Yul;Kim, Moo-Sung;Cho, Hyun-Jun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.2
    • /
    • pp.98-104
    • /
    • 2001
  • Cultivation area of the plastic film-house has been continuously increased with the increase of consumers' income. Intensive land use without fallowing or crop rotation caused severe problem such as salt accumulation in soils and in turn retarded growth and low productivity. This study was carried out to solve them derived from longterm intensive farming practices. Seven farmers who are practicing plastic film-house cultivation were recommended for case study by municipal government and selected for their excellency of cultivation and soil management. The cultivation periods of these systems were in the range of 5 to 40 years in the regions mainly located in alluvial soil cultivated with cucumber, tomato and red pepper. The soils texture of the excellent farmers' fields were silt loam or sandy loam, ranged from 7 to 15 percents of clay contents. Soil bulk density, depth of plowing layer and soil aggregates contents of the farmers' soils were 0.89, 23.1 cm, 61.6% whereas those in neighboring soils were 1.10, 17.8 cm, 54.2 %, respectively. And pH, OM and $NO_3-N$ of the farmers' soils also were better than those of neighboring soils. There was no difference in population densities of nematode between the good farmers' and neighboring soils, but actinomyces and Fusarium densities of recommended farmers' soils were better than neighboring soils. The major farming practices by the good farmers were characterized by deep plowing with flooding, amendment of crude organic matter, and reduction of chemical fertilizer application before transplanting, and also drip irrigation and liquid manure application after planting. They also conducted solar sterilization with or without flooding, removal of plastic films during rainy days and culturing rice or corn as rotation crops to avoid the problems mentioned above.

  • PDF

Soil CO2 efflux in a warm-temperature and sub-alpine forest in Jeju, South Korea

  • Jeong, Heon-Mo;Jang, Rae-Ha;Kim, Hae-Ran;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.41 no.6
    • /
    • pp.165-172
    • /
    • 2017
  • Background: This study investigated the temporal variation in soil $CO_2$ efflux and its relationship with soil temperature and precipitation in the Quercus glauca and Abies koreana forests in Jeju Island, South Korea, from August 2010 to December 2012. Q. glauca and A. koreana forests are typical vegetation of warm-temperate evergreen forest zone and sub-alpine coniferous forest zone, respectively, in Jeju island. Results: The mean soil $CO_2$ efflux of Q. glauca forest was $0.7g\;CO_2\;m^{-2}\;h^{-1}$ at $14.3^{\circ}C$ and that of A. koreana forest was $0.4g\;CO_2\;m^{-2}\;h^{-1}$ at $6.8^{\circ}C$. The cumulative annual soil $CO_2$ efflux of Q. glauca and A. koreana forests was 54.2 and $34.2t\;CO_2\;ha^{-1}$, respectively. Total accumulated soil carbon efflux in Q. glauca and A. koreana forests was 29.5 and $18.7t\;C\;ha^{-1}$ for 2 years, respectively. The relationship between soil $CO_2$ efflux and soil temperate at 10 cm depth was highly significant in the Q. glauca ($r^2=0.853$) and A. koreana forests ($r^2=0.842$). Soil temperature was the main controlling factor over $CO_2$ efflux during most of the study period. Also, precipitation may affect soil $CO_2$ efflux that appeared to be an important factor controlling the efflux rate. Conclusions: Soil $CO_2$ efflux was affected by soil temperature as the dominant control and moisture as the limiting factor. The difference of soil $CO_2$ efflux between of Q. glauca and A. koreana forests was induced by soil temperature to altitude and regional precipitation.

Mobility of Water and Solute Intluenced by PHYSICAL PROCESSES in field Soils (포장에서 물리적 진행과정에 의해 영향을 받은 물질과 수분의 이동성)

  • Doug Young Chung
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.2
    • /
    • pp.73-81
    • /
    • 1996
  • The self-diffusion coefficients of chloride and tritiated water ranged from 4.8 $\times$ 10-7 to 7.2 $\times$ 10-7 cm2/sec and 5.5 $\times$ 10-5 to 1.6 $\times$ 10-4 cm2/sec for three different depths of soil constituents at about 50% water content by volume, respectively Mobility of solute and water was conducted under steady-state flow conditions in a field soil consisting of 70 cm of clay to silty clay over a medium sand. A steady-state water flow conditions was maintained by applying irrigation water at a constant flux of 2cm per day. The water labeled with chloride and tritium was leached into the plot during the steady-state condition for 87 days. The positions of tritium and chloride as a function of soil depth and the time was measured by extracting samples of the soil solution with suction probes. Extremes in solute displacement occurred at equal and different depths within the plot. An analysis of these measurements indicated the observations of the pore-water velocity and the apparent diffusion coefficient were log normally disturbed. Twenty-four soil suction probes, used to identify the rate at which a solute was displaced in the soil, will yield an estimate of the mean pore-water velocity of this soils within a range of approximately 5% of its true value providing the effects of potential solute-soil interaction are taken into account.

  • PDF

One dimensional diffusion of NaCl in flooded soil systems (담수(湛水) 토양계(土壤系)에서 염분(鹽分)의 일차원적(一次元的) 확산(擴散))

  • Oh, Yong-Taeg;Yoo, Sun-Ho;Jung, Yeong-Sang;Hong, Chong Woon;Park, Chun Suh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 1976
  • 1. Under an asumption that Ficks diffusion equation could be applicable in soil systems, the diffusivities of NaCl in several flooded soil systems were measured to range from $0.4{\times}10^{-5}cm^2sec^{-1}$ to $0.83{\times}10^{-5}cm^2sec^{-1}$ 2. It was discussed that, when a polder soil with a uniform initial salt content through the profile is desalinated only by diffusion to flooding water, the salt content in profile is a function of soil depth, diffusion time, and diffusivity as following $$C=C^{\circ}erf\frac{x}{\sqrt[2]{Dt}}$$ 3. On the basis of Kirkham, et al's integration of complementary erra function, the speed of desalting was discussed to be inversely proportional to the square root of time as following $$dq/dt=C^{\circ}{\sqrt{D/{\pi}t}}$$ 4. It was estimated enough to exchange the flooding water once or twice, even when desalination of polder soil is carried out only by diffusion, if the desalination begins in June, the used flooding water is fresh water, and flooding depth is 10cm. 5. Desalination of polder soil by diffusion requires 2 month for good standing of planted rice.

  • PDF

Development of Freezing Resistance of Eleocharis kuroguwai Tuber (올방개 괴경(塊莖)의 저온저항성(低溫抵抗性) 발현(發現)에 관(關)한 연구(硏究))

  • Shin, H.S.;Chun, J.C.
    • Korean Journal of Weed Science
    • /
    • v.11 no.3
    • /
    • pp.205-210
    • /
    • 1991
  • The freezing resistance of Eleocharis kuroguqai was evaluated in artifical and natural freezing conditions in relation to tuber size, depth of tuber burial and soil moisture conditions. Osmotic potential of immature and mature tuber of E. kuroguqai before hardening was -12.1 and -23.5 bar, respectively, but decreased to -61. 0 and -67.1 bar after 120-day hardening period. Percent survival of E. kuroguqai tubers during the winter period was 13% and 67% in dry and moist moisture conditions at burial of 5cm depth, but all tubers were survived in the three moisture conditions employed when buried at 25cm depth. Greater decrease of osmotic potential was observed in tubers buried at 5cm depth than tubers buried at 25cm depth, resulting in greater freezing resistance in the former. Large tuber was more susceptable to freezing temperatures than small tuber.

  • PDF

Community Structure, Phytomass, and Primary Productivity in Thuja orientalis Stands on Limestone Area

  • Kwak, Young-Se;Lee, Choong-Il
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.3
    • /
    • pp.189-196
    • /
    • 1999
  • The community structure, phytomass, and primary productivity in Thuja orientalis stands on a limestone area located in Maepo-up, Chungbuk province in Korea were estimated quantitatively. Seven species including a small proportion of Quercus dentata were identified in the tree layer, 26 species including Ulmus macrocarpa in the shrub layer, and 79 species including Carex lnceolata in the herb layer of the Thuja stands. The vertical distribution of the fine root phytomass exhibited a power functional decrease relative to the soil depth. The seasonal changes in the fine root phytomass at a soil depth of 5 cm were closely related to the pecipitation in the study area. The productivity of the stand of stems, branches, leaves, and roots were 10.72, 0.82, 0.45 and 6.46 ton DM. $ha^{-1}$ .$yr^{-1}$, respectively. The Thuja stand had a high foliage(25%) and low rate of production per unit of foliage. The annual turnover rate of the fine roots int he Thuja stand was 6.71 $yr^{-1}$. The net primary production of the overstory including the understory was estimated at 19.48 ton DM.$ha^{-1}$.$yr^{-1}$ including an underground section of 6.46 ton DM.$ha^{-1}$.$yr^{-1}$(33%). The allocation ratio of net production to root was lower in the limestone Thuja communities than at the nearby non-limestone ones, whereas the production efficiency to leaf weight was higher in the limestone communities. These results would seem to indicate that the limited production capacity is due to the calcium toxicity and low availability of iron and phosphorus in a limestone soil with a high pH, calcium, and bicarbonate content with a strategy for survival in a hostile habitat.

  • PDF

Taxonomical Classification and Genesis of Donggui Series in Jeju Island (제주도 토양인 동귀통의 분류 및 생성)

  • Song, Kwan-Cheol;Hyun, Byung-Keun;Moon, Kyung-Hwan;Jeon, Seung-Jong;Lim, Han-Cheol;Kang, Ho-Jun
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.20-26
    • /
    • 2010
  • This study was conducted to reclassify Donggui series based on the second edition of Soil Taxonomy and to discuss the formation of Donggui series in Jeju Island. Morphological properties of typifying pedon of Donggui series were investigated and physico-chemical properties were analyzed according to Soil survey laboratory methods manual. The typifying pedon has very dark grayish brown (10YR 3/2) silt loam A horizon (0~17 cm), gravelly very dark grayish brown (10YR 3/2) silt loam BA horizon (17~42 cm), gravelly very dark grayish brown (10YR 3/2) silty clay loam Bt1 horizon (43~80 cm), brown (7.5YR 4/6) silty clay Bt2 horizon (80~105 cm), and brown (10YR 5/4) silty clay Bt3 horizon (105~150 cm). It is developed in lava plain and are derived from basalt and pyroclastic materials. The typifying pedon contains 1.3~2.1% oxalate extractable (Al + 1/2 Fe), less than 85% phosphate retention, and higher bulk density than 0.90 $Mg/m^3$. That can not be classified as Andisol. But it has an argillic horizon from a depth of 22 to 150 cm and a base saturation (sum of cations) of less than 35% at 125 cm below the upper boundary of the argillic horizon. That can be classified as Ultisol, not as Andisol and Inceptisol. It has udic soil moisture regime, and can be classified as Udalf. Also that meets the requirements of Typic Hapludalf. It has 18-35% clay at the particle-size control section, and have thermic soil temperature regime. Therefore Donggui series can be classified as fine loamy, mixed, thermic family of Typic Hapludalfs, not as fine silty, mixed, thermic family of Dystric Eutrudepts.

Study on the Dormancy and Emergence of Eleocharis kuroguwai Ohwi (올방개의 휴면(休眠)과 출아(出芽)에 관(關한) 연구(硏究))

  • Im, I.B.;Jun, B.T.;Park, S.H.;Guh, J.O.
    • Korean Journal of Weed Science
    • /
    • v.10 no.3
    • /
    • pp.186-191
    • /
    • 1990
  • This experiments was conducted to investigate the dormancy of Eleocharis kuroguwai tuber in the earth and the influence of seeding time and depth on the emergence of Eleocharis kuroguwai. The tuber of Eleocharis kuroguwai on underground was formed the most amount between 10cm and 15cm layer and formed the second a lot of tuber in the soil layer between 5cm and 10cm, the third between the surface of the earth and 5cm, the least between 15cm and 20cm. The total mean emergence of tuber was 78%, and the dormant tuber was approximately 22% of total tuber formed during a year in the earth. The distribution of dormant tuber under the ground was about 42% between 15cm and 20cm, 39% between 10 cm and 15cm, 14% between 5cm and 10cm, and 5% between the surface of the earth and 5cm. The dormancy percent of tuber formed at each soil layer was about 60% between 15cm and 20cm, 21% between 10cm and 15cm, 12% between 5cm and 10cm, and 7% between the surface of the earth and 5cm. The emergence days of the tuber seeded at low layer was short, and the emergence rate was high, The tuber was formed much more on seeding at May 30th than June 30th.

  • PDF

Comparison of Behaviors for Underground Flexible Pipes with Installation Gap (관로 이격거리에 따른 지중매설관의 거동특성 비교)

  • 이대수;상현규;김경열;홍성연
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.79-87
    • /
    • 2003
  • Underground flexible pipes for electric cables are subject to external loads and surrounding soil pressure. Particularly, strain of flexible pipes is of great concern in terms of safety and maintenance of electric cables. In this paper, stress and strain of flexible pipes with two types of installation gap, ie, l0cm and naught, were compared to investigate the structural integrity of pipes from actual field test. The effect of degree of compaction and burial depth were also investigated to simulate the variety of construction situation. The results of the field test show that the strain criteria were satisfied under the burial depths of 80cm, 100cm and 120cm regardless of installation gap.

Spatial Distribution of Rice Root under Long-term Chemical and Manure Fertilization in Paddy (화학비료 및 희비 장기시용에 따른 벼 뿌리 분포 특성)

  • 전원태;박창영;조영손;박기도;윤을수;강위금;박성태;최진용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.484-489
    • /
    • 2003
  • It is well known that root distribution of rice is a crucial factor for nutrient absorbtion and affect by soil fertility management. However, the findings on root distribution are limited due to laborious and tedious work. The characteristics of root distribution were investigated in long-term fertilizer experiment plots that were established in paddy soil, a fine silty family of typic Hal-paqueps (Pyeongtaeg series) in 1967. fertilizer experiment plots of no fertilizer, compost, NPK and NPK+compost plot have been maintained consistently for the past thirty six year and Npk+silicate plot for the past twenty two years. In NPK plot, 150kg N (urea), 100kg -$\textrm{P}_2\textrm{O}_5$ (fused phosphate) and 100kg $\textrm{K}_2\textrm{O}$(potassium chloride) per hectare have been applied. For NPK+silicate plot, 500kg $\textrm{Si}\textrm{O}_2$ (silicate) was applied in addition to fertilizer in NPK plot. For the compost plot, 10,000kg rice straw compost per hectare were applied. Root samples were taken from the positions of hill-center (below hill) and mid-point of four adjacent rice hills at heading stage by cylinder monolith (CM) method. The soil cores were sampled 20cm depth from the soil surface and partitioned four into layers at an interval of 5cm. The soil particles surrounding roots were washed out with tap water, Length and weight of the roots in each soil layer were measured and root length density (RLD), root weight density (RWD), specific root length(SRL) and rooting depth index (RDI) were calculated. Total root length was measured by intersection method. Plant height, tiller and shoot dry weight were the highest in NPK+compost plot. But RLD of hill-center soil cores was the highest in no-fertilizer plots. In the soil cores from mid-point position of four adjacent hills, RLD at 15-20cm soil depth was higher in compost plot than NPK plot. RLD in compost plots showed even distribution compared to those in chemical- fertilizer plots. RWD was the highest in the NPK+compost plot. SRL was the lowest in the NPK+silicate plot. RDI was the highest in the compost plot. Also, in this experiment it was found that the distribution of roots was closely related to the physical properties of the soil as affected by fertilization management.