• Title/Summary/Keyword: soil deformation

Search Result 731, Processing Time 0.025 seconds

Nonlinear analysis of finite beam resting on Winkler foundation with consideration of beam-soil interface resistance effect

  • Zhang, L.;Zhao, M.H.;Xiao, Y.;Ma, B.H.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.5
    • /
    • pp.573-592
    • /
    • 2011
  • Comprehensive and accurate analysis of a finite foundation beam is a challenging engineering problem and an important subject in foundation design. One of the limitation of the traditional Winkler elastic foundation model is that the model neglects the effect of the interface resistance between the beam and the underneath foundation soil. By taking the beam-soil interface resistance into account, a deformation governing differential equation for a finite beam resting on the Winkler elastic foundation is developed. The coupling effect between vertical and horizontal displacements is also considered in the presented method. Using Galerkin method, semi-analytical solutions for vertical and horizontal displacements, axial force, shear force and bending moment of the beam under symmetric loads are presented. The influences of the interface resistance on the behavior of foundation beam are also investigated.

Buckling analysis of partially embedded pile in elastic soil using differential transform method

  • Catal, Seval;Catal, Hikmet Huseyin
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.247-268
    • /
    • 2006
  • The parts of pile, above the soil and embedded in the soil are called the first region and second region, respectively. The forth order differential equations of both region for critical buckling load of partially embedded pile with shear deformation are obtained using the small-displacement theory and Winkler hypothesis. It is assumed that the behavior of material of the pile is linear-elastic and that axial force along the pile length and modulus of subgrade reaction for the second region to be constant. Shear effect is included in the differential equations by considering shear deformation in the second derivative of the elastic curve function. Critical buckling loads of the pile are calculated for by differential transform method (DTM) and analytical method, results are given in tables and variation of critical buckling loads corresponding to relative stiffness of the pile are presented in graphs.

Study on The Estimation of Pipeline\ulcornerSoil Interaction Force during Transverse Permanent Ground Deformation (횡방향 영구지반변형 발생시 관$\cdot$지반 상호작용력의 산정에 관한 연구)

  • 김태욱;임윤묵;김문겸;장성희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.165-173
    • /
    • 2003
  • In this study, the applicability of currently used pipeline.soil interaction force and previously proposed analytical relationship for the response analysis of buried pipeline subjected to transverse permanent ground deformation (PGD) due to liquefaction is evaluated. Based on meaningful contemplation, the improvement of interaction force and proposition of analytical relationship is made. Improved interaction force includes various patterns of PGD or spatial distributions of interaction force caused by the decrease of soil stiffness, and proposed relationship based on improved formula is applicable without regard to the width of PGD. Through the comparison of numerical results by use of commercial FEM program, the rational applicability of proposed relationship is objectively confirmed.

  • PDF

Strength and Deformation Characteristic of Two-Phase Mixture Soil (폐기물을 포함한 이종혼합토의 강도·변형특성)

  • Lee, Ki-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.2
    • /
    • pp.33-39
    • /
    • 2001
  • In order to utilize mass of oyster shells for a partial substitute material for reclamation, the shear characteristics of two-phase mixture soil with oyster shells were investigated with $\overline{CU}$ test. From various experiments, it was found that the increase of mixed ratio of oyster shells causes the shear strength of mixed soil. And this phenomenon not only depends on friction due to confining pressure such as pure clay but also is influenced by shaping skeleton of oyster shells. Also, it was discovered that there were many influences by clay-oyster shell mixture from the study of the secant modulus and dilatancy characteristics of mixed soil. In addition, variation of oyster shell skeleton during shearing stage is examined applying modifying coefficient concept.

  • PDF

Characterization of face stability of shield tunnel excavated in sand-clay mixed ground through transparent soil models

  • YuanHai Li;XiaoJie Tang;Shuo Yang;YanFeng Ding
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.439-451
    • /
    • 2023
  • The construction of shield tunnelling in urban sites is facing serious risks from complex and changeable underground conditions. Construction problems in the sand-clay mixed ground have been more reported in recent decades for its poor control of soil loss in tunnel face, ground settlement and supporting pressure. Since the limitations of observation methods, the conventional physical modelling experiments normally simplify the tunnelling to a plane strain situation whose results are not reliable in mixed ground cases which exhibit more complicated responses. We propose a new method for the study of the mixed ground tunnel through which mixed lays are simulated with transparent soil surrogates exhibiting different mechanical properties. An experimental framework for the transparent soil modelling of the mixed ground tunnel was established incorporated with the self-developed digital image correlation system (PhotoInfor). To understand better the response of face stability, ground deformation, settlement and supporting phenomenon to tunnelling excavation in the sand-clay mixed ground, a series of case studies were carried out comparing the results from cases subjected to different buried depths and mixed phenomenon. The results indicate that the deformation mode, settlement and supporting phenomenon vary with the mixed phenomenon and buried depth. Moreover, a stratigraphic effect exists that the ground movement around mixed face reveals a notable difference.

Omnipresence of Strain Localization in Soils (흙의 변형국지화 편재에 관한 연구)

  • 권태혁;조계춘
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.199-210
    • /
    • 2003
  • The development of strain localization within shear zones is frequently observed during soil deformation. In fact, the phenomenon appears to be more often the norm rather than the exception. Conceptually, any soil condition that renders negative work increment is prone to localization. In this study, a broad range of soil and loading conditions are investigated to test this criterion, including: dilative soil subjected to drained shear (standard case), contractive soil sheared under undrained conditions, cavitation in dilative soil in undrained shear, inhomogeneous soils, particle alignment in contractive soils made of platy particles, soils that experience particle crushing, and the shear of low-moisture and/or lightly cemented loose soils. Unique specimens and test procedures are designed to separately test each of these soil conditions in the laboratory According to experimental test results, soil specimens with post-peak strain softening behavior are prone to progressive failure, localization of deformations, and shear banding. The state of stress, the soil density, inherent mechanical and geometrical properties of soil particles, low water content, and heterogeneity can contribute to triggering strain localization. Considering all possible cases of localization, the best method to obtain the critical state line in the laboratory is to use contractive homogeneous specimens subjected to drained shear.

Dilatometer test for evaluating deformation characteristics in sand (사질토의 변형특성 평가를 위한 딜라토미터 시험의 활용)

  • Lee, Moon-Joo;Hong, Sung-Jin;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.241-252
    • /
    • 2010
  • This study investigates the application of dilatometer test for evaluating the deformation characteristics of granular soil. $K_D$ is the most sensitive to the stress history among CPT and DMT measurements, and $E_D$ and $q_c$ are observed to be similarly affected by the stress history. The coefficient of at-rest earth pressure($K_0$) is an indirect measure evaluating the stress history of granular soil. A relation using only DMT indices provides appropriate prediction of $K_0$ values. Although penetration of dilatometer inevitably induces the failure of cementation bonds, $E_D$ reflects the deformation characteristics of undamaged cementation relatively well. Therefore, a slightly better prediction of M value for cemented sand is achieved by using $E_D$ rather than $q_c$. Because of the weaker particle strength of calcareous sand compared than quartz sand, the majority of sand particles adjacent to dilatometer probe will be crushed during penetration. The particle crushing will induce the less contraction of the dilatometer membrane during penetration, consequently, the smaller $K_D$ and $E_D$ of calcareous sand.

  • PDF

Performance-based framework for soil-structure systems using simplified rocking foundation models

  • Smith-Pardo, J. Paul
    • Structural Engineering and Mechanics
    • /
    • v.40 no.6
    • /
    • pp.763-782
    • /
    • 2011
  • Results from nonlinear time-history analyses of wall-frame structural models indicate that the condition of vulnerable foundations -for which uplifting and reaching the bearing capacity of the supporting soil can occur before yielding at the base of the shear walls- may not be necessarily detrimental to the drift response of buildings under strong ground motions. Analyses also show that a soil-foundation system can inherently have deformation capacity well in excess of the demand and thus act as a source of energy dissipation that protects the structural integrity of the shear walls.

Characteristic Analysis of Permanent Deformation in Railway Track Soil Subgrade Using Cyclic Triaxial Compression Tests (국내 철도 노반 흙재료의 반복재하에 따른 영구변형 발생 특성 및 상관성 분석)

  • Park, Jae Beom;Choi, Chan Yong;Kim, Dae Sung;Cho, Ho Jin;Lim, Yu Jin
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.64-75
    • /
    • 2017
  • The role of a track subgrade is to provide bearing capacity and distribute load transferred to lower foundation soils. Track subgrade soils are usually compacted by heavy mechanical machines in the field, such that sometimes they are attributed to progressive residual settlement during the service after construction completion of the railway track. The progressive residual settlement generated in the upper part of a track subgrade is mostly non-recoverable plastic deformation, which causes unstable conditions such as track irregularity. Nonetheless, up to now no design code for allowable residual settlement of subgrade in a railway trackbed has been proposed based on mechanical testing, such as repetitive triaxial testing. At this time, to check the DOC or stiffness of the soil, field test criteria for compacted track subgrade are composed of data from RPBT and field compaction testing. However, the field test criteria do not provide critical design values obtained from mechanical test results that can offer correct information about allowable permanent deformation. In this study, a test procedure is proposed for permanent deformation of compacted subgrade soil that is used usually in railway trackbed in the laboratory using repetitive triaxial testing. To develop the test procedure, an FEA was performed to obtain the shear stress ratio (${\tau}/{\tau}_f$) and the confining stress (${\sigma}_3$) on the top of the subgrade. Comprehensive repetitive triaxial tests were performed using the proposed test procedure on several field subgrade soils obtained in construction sites of railway trackbeds. A permanent deformation model was proposed using the test results for the railway track.

Behavior Characteristics of Underground Flexible Pipe Backfilled with Lightweight Foamed Soil (경량기포혼합토로 뒷채움된 연성매설관의 거동특성)

  • Lee, Yong-Jae;Yea, Geu-Guwen;Park, Sang-Won;Kim, Hong-Yeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.1
    • /
    • pp.43-50
    • /
    • 2015
  • Lightweight Foamed Soil (LWFS) is a useful material for underground pipe backfill because of reusability of excavated soil and no compaction effect. In this research, a pilot test is carried out and monitoring results are analyzed to investigate behaviors of a flexible pipe, when LWFS is applied as a backfill material. Simultaneously, they are compared with another test case which is backfilled with Saemangeum dredged soil. As a result, the vertical earth pressure of the case backfilled with LWFS slurry presents that decreases as much as 25.6% in comparison with dredged soil and it is only within 10% after solidification. In case backfilled with dredged soil, the horizontal earth pressure is more than 3.6 times of the case used by LWFS and the vertical and horizontal deformation is more than 3.2 and 2.6 times of the case, respectively. It presents excellent effects on earth pressure and deformation reduction of LWFS. The stresses measured at the upper side of the pipe generally present compressive aspects in case backfilled with dredged soil. However, they present tensile aspects in case of LWFS. It is because of negative moment occurred at the center of the pipe due to the buoyancy from LWFS slurry. Conclusively, LWFS using Saemangeum dredged soil is very excellent material to use near the area in comparison with the dredged soil. However, the countermeasure to prevent the buoyancy is required.