• Title/Summary/Keyword: soil composition

Search Result 987, Processing Time 0.032 seconds

Variation of Rare Earth Element Patterns during Rock Weathering and Ceramic Processes: A Preliminary Study for Application in Soil Chemistry and Archaeology (암석의 풍화과정 및 도자기 제조과정에 따른 희토류원소 분포도의 변화: 토양화학 및 고고학적 응용을 위한 기초연구)

  • Lee, Seung-Gu;Kim, Kun-Han;Kim, Jin-Kwan
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.133-143
    • /
    • 2008
  • On the basis of chemical composition of granite, gneiss and their weathering products, in this paper, rare earth elements (REEs) was estimated as tracer for clarifying a geochemical variance of earth surface material during weathering process. The chemical composition of clay, clay ware and pottery also were measured for testifying usefulness of REE geochemistry in clarifying the source material of pottery. It was observed that there was no systematic variation of chemical composition among source rock, weathered rock and soil during weathering process. The chemical composition of clay, clay ware and pottery also did not show systematic variation by baking pottery. However, PAAS (Post Archean Australian Shale)-normalized REE patterns of rock-weathered rock-soil and clay-clay ware-pottery are similar regardless of weathering process or ceramic art. Our results confirm that REE geochemistry is powerful tool for clarifying the source materials of surface sediment or archaeological ceramic products.

Altitudinal Variation in Species Composition and Soil Properties of Banj Oak and Chir Pine Dominated Forests

  • Kumar, Munesh;Singh, Harpal;Bhat, Jahangeer A.;Rajwar, G.S.
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.1
    • /
    • pp.29-37
    • /
    • 2013
  • The study was carried out in two different forest types viz., Banj oak and Chir pine forests to assess the variation in forest species composition and soil properties along altitudinal gradients in the Garhwal Himalayas. The results of the study showed that between the forests soil moisture was higher in Banj oak forest because of closed canopy and dense forest compared to Chir pine forest. The sand particles were reported higher in Banj oak forest which might be due to the addition of organic matter favouring coarse structure of soil, helping in holding maximum water in soils. However in the Chir pine forest low amount of soil organic matter and presence of clayey soil, develops soil compactness which reduces the penetration of water resulting in high soil bulk density. The higher accumulation of litter and presence of moisture in Banj oak forest favours higher nutrient level of nitrogen, phosphorus and potassium compared to Chir pine forest. The soil organic carbon also reduced with increasing altitude at both gradients. While bulk density has reverse trend with soil organic carbon in both the forests at different peaks of same region. In Banj oak forest, the highest density and total basal cover was reported 1,100 tree $ha^{-1}$ and 58.86 $m^2\;ha^{-1}$ respectively. However, the highest values of density and total basal cover of Chir pine forest was 560 tree$ha^{-1}$ and 56.94 $m^2\;ha^{-1}$ respectively. The total density and basal cover of both the forests reduced with increasing altitude. The study concludes that Banj oak forest has better nutrient cycling ability, well developed foest floor and has a greater protective and productive features compared to the Chir pine forest which is without lower vegetation cover and having only pine litter accumulation which does not allow any other species to grow.

Efect of Mixed-Culture Soil on Growth Characteristics and Nutrient Silage Corn (혼파재배 토양이 옥수수 생육특성 및 영양수량에 미치는 영향)

  • 이상무;문상호;전병태
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.16 no.4
    • /
    • pp.283-290
    • /
    • 1996
  • This experiment was carried out to determine the effects of soil condition that previous crop cultivated after [TO: Soil of corn cultivated, T1 : Soil of rye monoculture cultivated(l50kg/ha), T2 : Soil of mixedculture cultivated(Rye : Red clover = 120 : 3koa). T3 : Soil of mixed-culture cultivated(Rye : Red clover = 90 : 6kg/ ha), T4 : Soil of mixedculture cultivated(Rye : Red clover = 60 : 9kg/ha), T5 : Soil of mixedculture cultivated (Rye: Red clover = 30 : 12kg/ha), T6 : Soil of red clover monoculture cultivated(l5kgha)) on the growth characteristics and nutrient yield of silage corn. The results are summarized as follows. 1. The plant length of silage corn was high in order of T6>T5>T4 treatment. In the leaf length, T5 and T6 treatment showed short compared to the other treatments, but they were wider than the other treatments in leaf width. In the number of leaf, T6 treatment was the highest as 14 leaves per plant, while T1 treatment showed lower than the other treatments as 12.6 leaves per plant. 2. In the stem hardness, ear length, ear width and ear full degree, soil treatment of red clover mono-culture cultivation(T6) showed higher than the other treatment as 5.1 1kg/$cm^2$, 20.8~~1, 7.7cm and 97%. respectively (P<0.01, 0.05). Ihe leaf of summer depression did not many occurrence, but T6 treatment was lower than the other treatment as 0.8 leaf per plant. 3. ADF and NDF composition were not affected by soil condition. Crude protein composition of T6 treatment was the highest as 7.8%. while TI treatment was the lowest as 6.9%. Fresh weight yield(59,083kg/ha), dry matter yield(21,743kg/ha), crude protein yield(l,369kg/ha) and TDN yield(15,800kg/ha) at T6 treatment were much more increased by 41.9, 47.5, 57.4 and 49% than TI treatment(39,410, 14,259, 827 and 10,056kg/ha).

  • PDF

Analysis of the Effect of Forest Fires on the Mineralogical Characteristics of Soil (산불 영향에 따른 토층의 광물학적 특성 변화에 관한 연구)

  • Man-Il Kim;Chang-Oh Choo
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.69-83
    • /
    • 2023
  • Forest fires increase the risk of subsequent soil erosion and mass movement in burned areas, even under rainfall conditions below landslide alert thresholds, by destroying plants and vegetation and causing changes to soil properties. These effects of forest fires can alter runoff in burned areas by altering soil composition, component minerals, soil water repellency, soil mass stability, and soil fabric. Heat from forest fires not only burns shallow organic matter and plants but also spreads below the surface, affecting soil constituents including minerals. This study analyzed X-ray diffraction and physical properties of topsoil and subsoil obtained from both burned and non-burned areas to identify the composition and distribution of clay minerals in the soil. Small amounts of mullite, analcite, and hematite were identified in burned soils. Vermiculite and mixed-layer illite/vermiculite (I/V) were found in topsoil samples from burned areas but not in those from non-burned areas. These findings show changes in soil mineral composition caused by forest fires. Expansive clay minerals increase the volume of soil during rainfall, degrading the structural stability of slopes. Clay minerals generated in soil in burned areas are therefore likely to affect the long-term stability of slopes in mountainous areas.

A soil surface information obtained by remote sensing technology (Remote Sensing 기법에 의한 토양정보추출(지역환경 \circled1))

  • 박종화;전택기
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.507-512
    • /
    • 2000
  • The main objective of this study is to provide a soil surface information, which represent a soil reflectance spectrum, by remote sensing technology. The soil reflectance of the soil was measured using a spectroradiometer in the wavelength range from 300nm to 1100nm. Measurements of soil reflectance have been made in four different soils. The results suggest that the reflectance properties of soils are related to their mineral composition and soil moisture. Increasing soil moisture resulted in an decrease in the rate of reflectance which leads to parallel curves of soil reflectance spectra. The soil line representing the relationship between red and near-infrared soil reflectance is characterized by soil types.

  • PDF

Biological Characteristics of Organic Soil applying Rye (Secale cereal L.) as Green Manure for the Long Term (장기간 호밀을 풋거름작물로 시용한 유기농 토양의 생물학적 특징)

  • Bak, Gye-Ryeong;Lee, Gye-Jun;Kim, Tae-Yeong;Jee, Sam-Nyu;Kim, Chang-Seok;Lee, Hyeong-Bok;Lee, Eun-Kyeong;Song, Jae-Kyeong
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.3
    • /
    • pp.427-437
    • /
    • 2018
  • In this study, microorganism community characteristics of organic managed soil which applied rye (Secale cereal L.) as green manure for 25 years, were determined. The chemical properties of organic soil showed high level of organic matter and available $P_2O_5$, while the level of exchangeable cation was low. The analysis of dehydrogenase activity and carbon source utilization indicated that the values in on organic soil were significantly higher than those of the control. It suggested that the microorganism community of organic soil had high microorganism activity, compared to the control. In addition, when the 16S rRNA gene-targeted NGS (Next generation sequencing) analysis was conducted to estimate the class of bacterial community, the class level of bacterial taxon composition on organic soil showed higher portion of Sphingobacteriia, Acidobacteriia, Gammaproteobacteria, Solibacteres and Planctomycetia. By base on the results of various reports in which organic managed soil had high portion of Acidobacteriia and Planctomycetia, the characteristic of taxon composition in organic soil, which showed the high percentages of Ktedonobacteria, Sphingobacteriia, Acidobacteriia and Gammaproteobacteria, was resulted from the application of rye as a green manure for the long term. However, further researches were needed because the crop effect was not considered in this study.

The Relationship between the Soil Seed Bank and Above-ground Vegetation in a Sandy Floodplain, South Korea

  • Cho, Hyung-Jin;Jin, Seung-Nam;Lee, Hyohyemi;Marrs, Rob H.;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.3
    • /
    • pp.145-155
    • /
    • 2018
  • In a monsoonal climate, the soil seed bank can play an important role in plant regeneration after the severe annual floods that disturb above-ground vegetation within the riparian zone. To investigate the relationship between the soil seed bank and vegetation, we measured the species composition of the soil seed bank and the extant above-ground vegetation in six major plant communities (Artemisia selengensis, Miscanthus sacchariflorus, Persicaria nodosa, Phalaris arundinacea, Phragmites japonica, and Rorippa palustris) in the Cheongmicheon Stream, Korea. A total of 21 species germinated from the floodplain soil seed banks. The most diverse seed bank (21 species) was found in the A. selengensis community, wheres the lowest number of species was found in the R. palustris community (2 species). Most soil seed banks were composed of annuals (90%), exceptions being Rumex crispus and Artemisia princeps, which are perennial ruderals. The similarity of species composition between the soil seed bank and above-ground vegetation was low with Sorensen's similarity indices averaging 29% (range 12 - 42%). Crucially, existing dominant perennials of the extant vegetation including A. selengensis, M. sacchariflorus, P. japonica and P. arundinacea were absent from the soil seed bank. In conclusion, the soil seed banks of the floodplains of the Cheongmicheon Stream were mainly composed of viable seeds of ruderal plants, which could germinate rapidly after severe flood disturbance. The soil seed bank may, therefore, be useful for the restoration of the early succession stages of riparian vegetation after flood disturbances.

The Study on Portland Cement Stabilization on the Weathered Granite Soils (on the Durability) (화강암질 풍화토의 시멘트에 의한 안정처리에 관한 연구 (내구성을 중심으로))

  • 도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.3
    • /
    • pp.60-74
    • /
    • 1980
  • Soil-cement mixtures involve problems in it's durability in grain size distribution and mineral composition of the used soils as well as in cement content, compaction energy, molding water content, and curing. As an attempt to solve the problems associated with durability of weathered granite soil with cement treated was investigated by conducting tests such as unconfined compression test, it's moisture, immers, wet-dry and freeze-thaw curing, mesurement of loss of weight with wet-dry and freeze-thaw by KS F criteria and CBR test with moisture curing on the five soil samples different in weathering and mineral composition. The experimental results are summarized as follows; The unconfined compressive strength was higher in moisture curing rather than in the immers and wet-dry, while it was lowest in freeze-thaw. Decreasing ratio of unconfined compressive strength in soil-cement mixtures were lowest in optimum moisture content or in the dry side rather than optimum moisture content with freeze-thaw. The highly significant ceofficient was obtained between the cement content and loss of weight with freeze-thaw and wet-dry. It was possible to obtain the durability of soil-cement mixtures, as the materials of base for roads, containing above 4 % of cement content, above 3Okg/cm$_2$ of unconfined compressive trength with seven days moisture curing or 12 cycle of freeze-thaw after it, above 100% of relative unconfined compressive strength, 80% of index of resistance, below 14% of loss of weight with 12 cycle of wet-dry and above 1. 80g/cm$_2$ of dry density.

  • PDF

Research on soil composition measurement sensor configuration and UI implementation (토양 성분 측정 센서 구성 및 UI 구현에 관한 연구)

  • Ye Eun Park;Jin Hyoung Jeong;Jae Hyun Jo;Young Yoon Chang;Sang Sik Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.76-81
    • /
    • 2024
  • Recently, agricultural methods are changing from experience-based agriculture to data-based agriculture. Changes in agricultural production due to the 4th Industrial Revolution are largely occurring in three areas: smart sensing and monitoring, smart analysis and planning, and smart control. In order to realize open-field smart agriculture, information on the physical and chemical properties of soil is essential. Conventional physicochemical measurements are conducted in a laboratory after collecting samples, which consumes a lot of cost, labor, and time, so they are quickly measured in the field. Measurement technology that can do this is urgently needed. In addition, a soil analysis system that can be carried and moved by the measurer and used in Korea's rice fields, fields, and facility houses is needed. To solve this problem, our goal is to develop and commercialize software that can collect soil samples and analyze the information. In this study, basic soil composition measurement was conducted using soil composition measurement sensors consisting of hardness measurement and electrode sensors. Through future research, we plan to develop a system that applies soil sampling using a CCD camera, ultrasonic sensor, and sampler. Therefore, we implemented a sensor and soil analysis UI that can measure and analyze the soil condition in real time, such as hardness measurement display using a load cell and moisture, PH, and EC measurement display using conductivity.

A Study on the Live Load According to Composition of the Planting Base of Green Roof (건축물 옥상녹화에 따른 식재기반구성의 적재하중에 관한 연구)

  • 김성수;서경호;김효열;강병희
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.85-90
    • /
    • 2004
  • We divided the planting bale into waterproof layer, drainage layer and soil layer so at to investigate changes of live load according to species of wood and composition of the base to make rooftops green. The results are follows, 1. As concerning construction and live load for green roof, sheet waterproofing is superior. 2. When materials of drainage are changed crushed gravel into artificial lightweight graval or ferrite, live load of planting bale is decreased about 22% and 25% in order. 3. When ingredients of soil are chased normal sand into volcanic sand, live load of base is decreased about 28%. Especially, when it is changed into ferrite, 54% of live load is decreased. 4. In this study, all live load we concerned excesses the standard about roof live load of office, school and house. Hence, structure has to be concerned thoroughly when making rooftops green. But, we judge that various methods for making rooftops green can be applied if we consider roof garden when we plan new buildings.

  • PDF