• Title/Summary/Keyword: soil compaction

Search Result 642, Processing Time 0.032 seconds

Site-specific Quantification and Management of Soil Compaction: A Review (토양 다짐 변이 측정 및 관리기술에 관한 연구동향)

  • Chong, B.H.;Chung, S.O.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.1 s.114
    • /
    • pp.24-32
    • /
    • 2006
  • Compaction is becoming a greater concern in crop production and the environment because it can have deleterious effects on growing conditions that are difficult to remediate. Because compaction can vary considerably from point to point within a field, and also from depth to depth within the soil profile, it is important to consider quantification and management of the spatial and vertical variability in soil compaction when developing an overall site-specific crop management plan. In this paper, the importance of soil compaction, techniques for quantification of its variability, and the concept of site-specific tillage are examined. Methods and systems to detect within-field variation in soil strength as a surrogate measure of soil compaction and related soil properties are also compared and discussed. Quantification of variability in soil compaction and site-specific compaction management was motivated recently, and sensors and control systems are still under development. Future study will need to address a number of issues related to understanding and applying the sensor measurements.

Effects of Different Levels of Soil Compaction and Coring Depth on the Growth and Thatch Accumulation in Perennial Ryegrass (토양경화의 토층공극 깊이의 차이가 Perennial Ryegrass 의 생육과 Thatch 축적에 미치는 영향)

  • 윤용범;이주삼
    • Asian Journal of Turfgrass Science
    • /
    • v.5 no.1
    • /
    • pp.33-39
    • /
    • 1991
  • This experiment was carried out in order to study the changes of morphological characters of growth and thatch accumulation in perennial ryegrass as affected by the different levels of soil compaction and coring depth. Soil compactions were treated with 10, 20, 30 and 40kg power roller and artificial core depth were 2.5, 5.0, 7.5 and 10.0cm under the ground, respectively. And, artificial core space were fixed 84.5% in all soil compaction levels. The results obtained were summarized as follows: 1. Relationship between number of tillers and root weight was positive significant difference for soil compaction levels. 2. Relationships between shoot dry weight and thatch weight, and number of tillers were positively significant difference for artificial core depths. It may indicate that thatch accumulation depend on the growth of shoot, and increase of shoot dry weight as growth progressed may due to increase of number of tillers, respectively. 3. Soil compaction level of 20kg was greatly influenced on the growth of shoot in all artificial soil depths. Thus, shoot dry weight and number of tillers were obtained the highest value, but thatch and root weight were obtained the lowest values at the soil compaction level of 20kg. It was suggested that soil compaction of 20kg is very suitable rolling factor for turf maintenance. 4. Thatch weight was positively significant difference for the interaction of soil compaction levelXcoring depth.5. Thatch weight was positive significant correlated with root weight, and negative significant correlated with number of tillers by increase of soil compaction levels.

  • PDF

A Study on the Mechanical Compaction of Fill Dam (Fill Dam의 기계 전압효과에 관한 연구)

  • 윤충섭;김주범
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.3
    • /
    • pp.92-103
    • /
    • 1979
  • The compaction of core zone of the fill dam is very important foe increasing of the Strength of soil mass and reduction of permeability of the core. The principal objects of this study are to give the construction criteria of tamping rollers and to find out the relationships between density and permeability of soil after compaction. The results in this study are summarized as follows. 1. The core zone of fill dam should be compacted more than 8 passed because the compaction effects of clayey soil increase sharply in about 8 passes of roller. 2. The coefficient of permeability (K) increases with the thickness of compaction of soil even though the density is same. 3. The effect of compaction increases with the quantity of coarse materials such as coarse sand and gravel. 4. If D values change from 100 percent to 98 percent and from 100 percent to 95 percent, K values become 2 times and 5 times of initial K value respectively. 5. The coefficient of permeability in the field soil is very high comparing with the result of laboratory test at the same 100 percent compaction ratio, but differences between both results decrease with the decrease of compaction ratio. 6. Thickness of soil layer for the compaction should be increased for heavier compaction machine. 7. In order to get the compaction ratio of 98 percent or more, 10 to 12 passes of roller is generally required with the thickness of soil from 20cm to 30cm.

  • PDF

Experimental Study on Compaction Effect of Hydraulic Fill Soils (실내실험을 통한 수중 매립토의 다짐효과 분석)

  • Lee, Haeng-Woo;Chang, Pyoung-Wuck;Chang, Woong-Hee;Bong, Tae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.301-310
    • /
    • 2006
  • A series of laboratory tests was carried out for analyzing compaction characteristics of hydraulic fill soils(or hydraulically filled soils). Hydraulic fill soils were settled down by the weight of soil particle itself in water and consolidated by the extraction of water from the soil structures. Water content and dry unit weight were observed as the depth of sedimentation and consolidation soil. It was found from the result that the optimum water content $(W_{cpt})$ of the maximum unit weight$(\gamma_{dmax})$ is higher than that of laboratory compaction test(KS F 2312 A method). It was due to difference in compaction energy and compaction effect between two methods. And the maximum dry unit of hydraulic fill soil is smaller than that of laboratory compaction test. Especially in terms of compaction effect, the maximum relative compaction degrees$(R_{cmax})$ of Seamangum dredged sand, river sand and mixed sand, half and half of dredged and river sands, were 85%, 91% and 86%, respectively. It means that the compaction effect can be $85\sim91%$ of the maximum unit weight in laboratory compaction test.

  • PDF

Assessment of Subsoil Compaction by Soil Texture on Field Scale

  • Cho, Hee-Rae;Jung, Kang-Ho;Zhang, Yong-Seon;Han, Kyung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.628-633
    • /
    • 2015
  • It is necessary to assess soil physical properties and crop growth treated by compaction to establish the soil management standard. This study evaluated the bulk density, strength and crop growth after subsoil compaction for sandy loam and loam on the field in Suwon, Korea. The treatments were compaction and deep tillage. Sandy loam and loam were classified to coarse soil and fine soil, respectively, depending on clay contents. In coarse soil, bulk density of compacted plot was 8~17% greater than control and deep tilled plot. The root growth was worse in compacted plot compared with control. In fine soil, plow pan was not observed in deep tilled plot with 5~19% smaller bulk density than compacted plot and control. Deep tillage improved the crop growth. The soil physical properties by compaction were dependent on clay content and crop growth limit depended on the traffic driving.

Evaluation of Compaction Properties of Subgrade Soil by Gyratory Compaction Curve (선회다짐곡선특성을 이용한 노상토의 다짐도 평가)

  • Lee, Kwan-Ho;Cha, Min-Kyung;Lim, Yu-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.33-40
    • /
    • 2009
  • Compacted soil are used in almost roadway construction with compaction of soil. The direct consequence of soil compaction is densification, which in turn results in higher strength, lower compressibility, and lower permeability. The standard and modified Proctor tests are the most common methods. Both of these tests utilize impact compaction, although impact compaction shows no resemblance to any type of field compaction and is ineffective for granular soils. It has been dramatic advances in field compaction equipment. Therefore, the Proctor tests no longer represent the maximum achievable field density. The main objectives of this research are a survey of current field compaction equipment, laboratory investigation of compaction characteristics, and field study of compaction characteristics. The findings from the laboratory and compaction program were used to establish preliminary guidelines for suitable laboratory compaction procedures.

Field study of the process of densification of loose and liquefiable coastal soils using gravel impact compaction piers (GICPs)

  • Niroumand, Bahman;Niroumand, Hamed
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.479-487
    • /
    • 2022
  • This study evaluates the performance of gravel impact compaction piers system (GICPs) in strengthening retrofitting a very loose silty sand layer with a very high liquefaction risk with a thickness of 3.5 meters in a multilayer coastal soil located in Bushehr, Iran. The liquefiable sandy soil layer was located on clay layers with moderate to very stiff relative consistency. Implementation of gravel impact compaction piers is a new generation of aggregate piers. After technical and economic evaluation of the site plan, out of 3 experimental distances of 1.8, 2 and 2.2 meters between compaction piers, the distance of 2.2 meters was selected as a winning option and the northern ring of the site was implemented with 1250 gravel impact compaction piers. Based on the results of the standard penetration test in the matrix soil around the piers showed that the amount of (N1)60 in compacted soils was in the range of 20-27 and on average 14 times the amount of (1-3) in the initial soil. Also, the relative density of the initial soil was increased from 25% to 63% after soil improvement. Also the safety factor of the improved soil is 1.5-1.7 times the minimum required according to the two risk levels in the design.

A Study on the Effect of Compaction Energy on Soil Compaction (흙의 다짐에너지가 다짐효과(效果)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Kim, Sang Mok;Kang, Yea Mook
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.1
    • /
    • pp.97-109
    • /
    • 1983
  • In this study, the effects on the soil compaction were investigated through the various testing method by changing the number of layers, the number of blows per layer and drop height. The results obtained in this study were summarized as follows. 1. Soil compaction was largely influenced by maximum grain size of soil in case of small testing mold diameter. 2. The compaction effect showed best in the well graded soil. In this test, compaction effect showed the best value in the soil which contained about 30~40% of particles finer than No. 200 sieves although it would vary according to the content of coarse grained soil. 3. Though the compaction method was changed at the level of compaction energy fixed, the effect of soil compaction showed little. 4. The increment of compaction energy increased the effect of soil compaction, but over a certain limit the soil compaction showed little on the effect. 5. In the method to increase the compaction energy for the purpose of the most reasonable effect, the soil compaction effect was differently shown according to the grain size distribution of the soil.

  • PDF

The Study on the Compaction Characteristics of Underground Structural Backfill with Reclaimed Soil (준설토를 이용한 지하구조물 뒷채움 다짐특성에 관한 연구)

  • 김영웅;박기순;손형호;김종국
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.357-364
    • /
    • 1999
  • The purpose of this study is to analysis the grain distribution and compaction characteristics of structural backfill with reclaimed soil. Five(5) reclaimed soil samples which passed #200 sieve have been used in the test. The study showed that the maximum dry density and the bearing value rate turned out to be becoming smaller when the more the quantity passed #200 sieve, the smaller the soil grain. The maximum dry density value calculated from the compaction md relative density test showed wet method > compaction method > dry method. The correlation coefficient between Rc and Dr based on the grain distribution and the compaction characteristics showed that the maximum dry density value by the wet method is little higher than the compaction method and dry method.

  • PDF

Experimental studys about Compaction in Soil (흙의 다짐에 관한 실험적 연구)

  • 이석찬
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.2
    • /
    • pp.2661-2667
    • /
    • 1972
  • In the construction of earth dam, embankment, highway by filling, a compaction is to increase the density of applying pressure. By compaction interspaces between the soil graivos decrease so that density and adhesion increase but void and permeability decrease. Good compaction results in higher stablilty. The effect of the compaetion depends on a number of factors, of which the most important are soil charactesistics. Water content, and external force. In this study discussed is about sandy loam that since, with indentical force exerted and indentical compaction method, the effect of the compaction will be different due to the soil characteristics, the change of optimum moisture content and of maximum dry density by compaction yields difference in Compaction for a same sample.

  • PDF