• 제목/요약/키워드: soil column

검색결과 836건 처리시간 0.031초

압축토양의 투수성과 수도생육 및 수확량에 관한 연구 (A Study on the Effect of the Permeability to Yield Weight of Paddy Rice on the Compressed Soil)

  • 조형용
    • 한국농공학회지
    • /
    • 제15권2호
    • /
    • pp.2968-2979
    • /
    • 1973
  • The aim of this study was to bring light on the effect of permeability to yield weight of paddy rice on the compressed soil. a) The percolation volume during the growth of paddy rice reduced, while the degree of compression on soil column increased and varied by the evaporation and absorption volumn. b) The percolation volume in the natural soil column was notably low compared with that of in the artificial and had little influence to the variation of permeabilty by compression. c) The results in growth of paddy rice were best on the section of low compression and the yield weight reduced, while the degree of compression on the soil column increased. d) The relationship between the yield weight and percolation volumn, under the condition when percolation volume is 1mm/day, had little difference in the yield weight but immediately reduced under $0.5{\sim}1.0mm/day$. The consequences of investigation are not so perfect, but have done my best to get some new data for effect on additional yield by inquiring into influences of permeability to the yield weight of paddy rice on compressed paddy field. I will have a great pleasure if treatise helps investigaters or the men of affairs in this field.

  • PDF

스탠딩컬럼웰을 적용한 지열히트펌프의 토양 및 지하수 미생물에 대한 영향 연구 (A Study on the Effects of Heat Pump Using Standing Column Well on Soil and Groundwater Microorganisms)

  • 전정의;박시삼;나상민;이건중;박재우
    • 한국지반환경공학회 논문집
    • /
    • 제10권7호
    • /
    • pp.93-101
    • /
    • 2009
  • 스탠딩 컬럼웰(Standing Column Well) 히트펌프시스템은 지하수의 열교환으로부터 지열에너지를 생산한다. 모의지열펌프시스템(SHPS)을 제작하고 이를 이용하여 변화하는 토양의 온도를 관찰하고, bleeding 실험 후 SHPS 내에서 토양 미생물의 양과 종의 변화를 파악하였다. 이와 같은 실험을 통해 토양의 온도 변화와 수분의 변화에 의해 토양 내 미생물의 전반적인 양은 감소하였고, 종의 개체수가 감소함을 볼 수 있었다. 열원으로 사용되는 지하수의 성상분석을 통해 사용 전 후의 특성을 파악하고, 지하수 시료를 생활용수 기준으로 수질 분석 하였다. 그 결과 지하수의 수질 자체가 매우 양호하여 지하수 오염은 일어나지 않은 것으로 파악되었다. 또한 지하수 시료의 경우에도 지하수 내 존재하고 있는 미생물의 종과 양의 변화를 파악하여, 열원으로 사용 전 후의 미생물의 종과 양이 변화 한다는 것을 알 수 있었다. 지하수의 온도가 2-3도 증가함에 따라 미생물의 양이 90% 정도 늘어났으며, 토양에 비해 종의 변화는 크지 않음을 확인할 수 있었다.

  • PDF

제지(製紙)슬러지의 답토양(畓土壤) 시용효과(施用效果) (Effects of Paper Mill Sludge in submerged Soil)

  • 최종우;조정례;이규승;김문규
    • 농업과학연구
    • /
    • 제19권2호
    • /
    • pp.187-193
    • /
    • 1992
  • 신개간 논토양에 제지슬러지를 3년간 시용한 논토양의 개량효과와 토양 column에 처리한 슬러지의 용탈실험을 실시한 결과는 다음과 같다. 1) 제지슬러지 2년과 3년 연속시용으로 무시용 토양에 비하여 토양 심층의 성상에 차이가 나타났으며, 질소, 인산, 칼리, CEC 및 유기물함량이 다소 증가하였다. 2) 슬러지시용에따라 토양의 갈색층이 무처리(10cm), 2년시용(15cm) 그리고 3년시용(20cm)으로 토양의 부식화가 촉진되었다. 3) 슬러지시용 토양의 토심 10-20cm 층위에서 유기물함량은 3년시용(1.75%) 2년시용(1.39%) > 무시용(0.9%)의 순으로 슬러지 시용효과를 보여주었다. 4) 토양 column 용탈실험 결과 슬러지 시용으로 모든 양분의 보유능이 증가하였으며, 토양과 지하수의 오염가능성은 거의 없다고 본다.

  • PDF

Soil-structure interaction effects on seismic behavior of a hyperbolic cooling tower using three-parameter Vlasov foundation model

  • Karakas, Ali I.;Ozgan, Korhan;Daloglu, Ayse T.
    • Earthquakes and Structures
    • /
    • 제14권1호
    • /
    • pp.85-94
    • /
    • 2018
  • The paper focuses on the seismic responses of a hyperbolic cooling tower resting on soil foundation represented by the three-parameter Vlasov elastic soil model. The three-parameter soil model eliminates the necessity of field testing to determine soil parameters such as reaction modulus and shear parameter. These parameters are calculated using an iterative procedure depending on the soil surface vertical deformation profile in the model. The soil and tower system are modeled in SAP2000 structural analysis program using a computing tool coded in MATLAB. The tool provides a two-way data transfer between SAP2000 and MATLAB with the help of Open Application Programming Interface (OAPI) feature of SAP2000. The response spectrum analyses of the tower system with circular V-shaped supporting columns and annular raft foundation on elastic soil are conducted thanks to the coded tool. The shell and column forces and displacements are presented for different soil conditions and fixed raft base condition to investigate the effects of soil-structure interaction. Numerical results indicate that the flexibility of soil foundation leads to an increase in displacements but a decrease in shell membrane and column forces. Therefore, it can be stated that the consideration of soil-structure interaction in the seismic response analysis of the cooling tower system provides an economical design process.

PRACTICAL MODELLING OF STONE-COLUMN REINFORCED GROUND

  • Tan By S.A.;Tjahyono S.
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 추계 학술발표회
    • /
    • pp.291-311
    • /
    • 2006
  • The acceleration of consolidation by stone columns was mostly analysed within the framework of a basic unit cell model (i.e. a cylindrical soil body around a column). A method of converting the axisymmetric unit cell into the equivalent plane-strain model would be required for two-dimensional numerical modelling of multi-column field applications. This paper proposes two practical simplified conversion methods to obtain the equivalent plane-strain model of the unit cell, and investigates their applicability to multi-column reinforced ground. In the first conversion method, the soil permeability is matched according to an analytical equation, whereas in the second method, the column width is matched based on the equivalence of column area. The validity of these methods is tested by comparison with the numerical results of unit-cell simulations and with the field data from an embankment case history. The results show that for the case of linear-elastic material modelling, both methods produce reasonably accurate long-term consolidation settlements, whereas for the case of elasto-plastic material modelling, the second method is preferable as the first one gives erroneously lower long-term settlements, where plastic yielding of stone column are ignored.

  • PDF

Salt Removal in a Reclaimed Tidal Land Soil with Gypsum, Compost, and Phosphate Amendment

  • Lee, Jeong-Eun;Seo, Dong-Hyuk;Yun, Seok-In
    • 한국토양비료학회지
    • /
    • 제48권5호
    • /
    • pp.326-331
    • /
    • 2015
  • High salinity and sodicity of soils play a negative role in producing crops in reclaimed tidal lands. To evaluate the effects of soil ameliorants on salt removal in a highly saline and sodic soil of reclaimed tidal land, we conducted a column experiment with treating gypsum, compost, and phosphate at 0-2 cm depth and measured the salt concentration of leachate and soil. Electrical conductivity of leachate was $45-48dSm^{-1}$ at 1 pore volume (PV) of water and decreased to less than $3dSm^{-1}$ at 3 PV of water. Gypsum significantly decreased SAR (sodium adsorption ratio) of leachate below 3 at 3 PV of water and soil ESP (exchangeable sodium percentage) below 3% for the whole profile of soil column. Compost significantly decreased ESP of soil at 0-5 cm depth to 5% compared with the control (20%). However, compost affected little the composition of cations below a depth of 5 cm and in leachate compared with control treatment. It was concluded that gypsum was effective in ameliorating reclaimed tidal lands at and below a soil layer receiving gypsum while compost worked only at a soil layer where compost was treated.

토양 column을 이용한 토성 및 자갈함량별 농약 이동특성 (Mobility of pesticides in different soil textures and gravel contents under soil column)

  • 이상민;김성수;박동식;허장현
    • 농약과학회지
    • /
    • 제9권4호
    • /
    • pp.330-337
    • /
    • 2005
  • 토성(미사질식양토, 태백; 사양토, 횡성; 양토, 춘천) 및 자갈 함량(0%, 20%, 40%, 60%)에 따라 7종 (carbendazim, carbofuran, chlorpyrifos, cypermethrin, dimethomorph, diniconazole, endosulfan)의 농약을 토양 컬럼에 처리한 후 증류수로 담수상태를 유지하며 수거한 용탈수와 용탈수 수거 후 채취한 토양 중 농약 잔류량을 파악하여 수계 및 토양으로의 농약 이동특성을 평가하였다. 토성 별 용탈수 중 농약은 수용해도가 가장 높은 carbofuran이 세 토양 모두에서 총 검출량의 87% 이상 초기 $2{\sim}4$ L 채취시료에서 검출되었으며, 토양중 carbendazim과 carbofuran을 제외한 5종의 농약 검출량은 미사질식양토 > 양토 > 사양토 순이었다. 컬럼의 상, 중 및 하단의 토양 중 농약 검출량은 carbofuran을 제외한 6종의 농약이 clay 함량이 유사한 미사질식양토 및 양토의 컬럼 상단에서 $50{\sim}92%$ 수준으로 검출되는 경향을 보여 수계로의 농약 이동성 및 토양잔류성은 각 농약의 수용해도와 토양 중 clay 함량에 의존하는 것으로 파악되었다. 자갈함량에 따른 농약의 잔류경향은 토성별 실험과 유사한 결과를 얻었으며, 이동특성 또한 큰 차이를 볼 수 없었으나 자갈함량이 증가할수록 용탈수의 이동 속도 증가와 함께 시간당 농약의 이동량도 증가하였다.

Seismic loss-of-support conditions of frictional beam-to-column connections

  • Demartino, Cristoforo;Monti, Giorgio;Vanzi, Ivo
    • Structural Engineering and Mechanics
    • /
    • 제61권4호
    • /
    • pp.527-538
    • /
    • 2017
  • The evaluation of the loss-of-support conditions of frictional beam-to-column connections using simplified numerical models describing the transverse response of a portal-like structure is presented in this paper considering the effects of the seismic-hazard disaggregation. Real earthquake time histories selected from European Strong-motion Database (ESD) are used to show the effects of the seismic-hazard disaggregation on the beam loss-of-support conditions. Seismic events are classified according to different values of magnitudes, epicentral distances and soil conditions (stiff or soft soil) highlighting the importance of considering the characteristics of the seismic input in the assessment of the loss-of-support conditions of frictional beam-to-column connections. A rigid and an elastic model of a frame of a precast industrial building (2-DoF portal-like model) are presented and adopted to find the minimum required friction coefficient to avoid sliding. Then, the mean value of the minimum required friction coefficient with an epicentral distance bin of 10 km is calculated and fitted with a linear function depending on the logarithm of the epicentral distance. A complete parametric analysis varying the horizontal and vertical period of vibration of the structure is performed. Results show that the loss-of-support condition is strongly influenced by magnitude, epicentral distance and soil conditions determining the frequency content of the earthquake time histories and the correlation between the maxima of the horizontal and vertical components. Moreover, as expected, dynamic characteristics of the structure have also a strong influence. Finally, the effect of the column nonlinear behavior (i.e. formation of plastic hinges at the base) is analyzed showing that the connection and the column are a series system where the maximum force is limited by the element having the minimum strength. Two different longitudinal reinforcement ratios are analyzed demonstrating that the column strength variation changes the system response.

Multi-Bioindicators to Assess Soil Microbial Activity in the Context of an Artificial Groundwater Recharge with Treated Wastewater: A Large-Scale Pilot Experiment

  • Michel, Caroline;Joulian, Catherine;Ollivier, Patrick;Nyteij, Audrey;Cote, Remi;Surdyk, Nicolas;Hellal, Jennifer;Casanova, Joel;Besnard, Katia;Rampnoux, Nicolas;Garrido, Francis
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권6호
    • /
    • pp.843-853
    • /
    • 2014
  • In the context of artificial groundwater recharge, a reactive soil column at pilot-scale (4.5 m depth and 3 m in diameter) fed by treated wastewater was designed to evaluate soil filtration ability. Here, as a part of this project, the impact of treated wastewater filtration on soil bacterial communities and the soil's biological ability for wastewater treatment as well as the relevance of the use of multi-bioindicators were studied as a function of depth and time. Biomass; bacterial 16S rRNA gene diversity fingerprints; potential nitrifying, denitrifying, and sulfate-reducing activities; and functional gene (amo, nir, nar, and dsr) detection were analyzed to highlight the real and potential microbial activity and diversity within the soil column. These bioindicators show that topsoil (0 to 20 cm depth) was the more active and the more impacted by treated wastewater filtration. Nitrification was the main activity in the pilot. No sulfate-reducing activity or dsr genes were detected during the first 6 months of wastewater application. Denitrification was also absent, but genes of denitrifying bacteria were detected, suggesting that the denitrifying process may occur rapidly if adequate chemical conditions are favored within the soil column. Results also underline that a dry period (20 days without any wastewater supply) significantly impacted soil bacterial diversity, leading to a decrease of enzyme activities and biomass. Finally, our work shows that treated wastewater filtration leads to a modification of the bacterial genetic and functional structures in topsoil.