• Title/Summary/Keyword: soil column

Search Result 836, Processing Time 0.027 seconds

Influence of dual layer confinement on lateral load capacity of stone columns: An experimental investigation

  • Akash Jaiswal;Rakesh Kumar
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.567-581
    • /
    • 2023
  • Enhanced vertical load capacity of the ground reinforced with the stone columns drew great attention by the researchers as it deals with many of the geotechnical difficulties associated with the weak ground. Recently, it has been found that the stone columns are also prone to fail under the shear load when employed beneath the embankments or the foundations susceptible to lateral loads. In this study, the effect of various encasement conditions on the lateral deflection of stone columns is investigated. A method of dual layers of encasement has been introduced and its the effect on lateral load capacity of the stone columns has been compared with those of the single encased stone column and the un-encased stone columns. Large shear box tests were utilised to generate the shear deformation on the soil system under various normal pressure conditions. The stiffness of the soil-stone column combined system has been compared for various cases of encasement conditions with different diameters. When subjected to lateral deformation, the encased columns outperformed the un-encased stone columns installed in loose sand. Shear stress resistance is up to 1.7 times greater in dual-layered, encased columns than in unencased columns. Similarly, the secant modulus increases as the condition changes from an unencased stone column to single-layer encasement and then to dual-layer encasement, indicating an improvement in the overall soil-stone column system.

Evaluating germination of lettuce and soluble organic carbon leachability in upland sandy loam soil applied with rice husk and food waste biochar (왕겨 바이오차 및 음식물쓰레기 바이오차가 밭 사양토에서 상추발아 및 수용성 유기탄소 용출에 미치는 영향 평가)

  • Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hee-Rae;Sonn, Yeon-Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.369-377
    • /
    • 2014
  • This study was carried out to evaluate the effect of rice husk (RHB) and food waste biochar (FWB) on upland soil with sandy loam texture, in terms of physico-chemical analysis, lettuce seed germination test, and orgainc carbon leaching experiment. RHB and FWB had different physico-chemical properties each other. Carbon to nitrogen ratio (C/N ratio) of RHB was 32, showing two times higher than that of FWB. FWB had high salt and heavy metal content, compared to RHB. This is probably due to different ingredients and production processing between two biochars each other. Results of germination test with Lettuce showed lower germination rate when FWB was applied because of higher salt concentration compared to control and RHB. Organic carbon leaching test using saturated soil column (${\Phi}75{\times}h75mm$) with $10MT\;ha^{-1}$ biochar application rate, showed higher saturated hydraulic conductivity in rice husk biochar treatment column, compared to control and food waste biochar treatment. The highest total organic carbon concentration in column effluent was lower than those in both of rice husk biochar and food waste biochar, whereas the differences was negligible after 9 pore volumes of effluent. Consequently, biochars from byproducts such as rice husk and food waste in sandy loam textured upland soil could enhance a buffer function such as reduction of leaching from soil, but the harmful ingredient to crops such as high salt and heavy metals could limit the agricultural use of biochars.

Logging for Diametric Variation of Granular Compaction Pile Using Crosshole Seismic Tests (크로스홀 탄성파 시험을 이용한 쇄석다짐말뚝의 시공직경 검측)

  • Park, Chul-Soo;Jung, Jae-Woo;Kim, Hak-Sung;Kim, Eun-Jung;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1415-1426
    • /
    • 2008
  • Stone columns, locally called "GCP (granular compaction pile)" can be used to improve strength and resistance against lateral movement of a foundation soil like rigid piles and piers. Also installation of such a discrete column facilitates drainage, and densifies and reinforces the soil in the sense of ground improvement. The integrity of the GCP has been indirectly controlled with the records of each batch including depth and the quantity of stone filled. An integrity testing was attempted using crosshole S-wave logging. The method is conceptionally same as the crosshole sonic logging (CSL) for drilled piers. The only and critical difference is that S-wave should be used in the logging, because P-wave velocity of the stone column is less than that of ground water. The crosshole sonic logger does not have the capability to measure S-wave propagating through the skeleton of crushed stone. An electro-mechanical source, which can generate either P- or SH-waves, and a 1-D geophone were used to measure SH-waves. Two 76mm diameter cased boreholes were installed 1 meter apart across the nominal 700mm diameter stone column. At every 10cm of depth, shear wave was measured across the stone column. One more borehole was also installed 1 meter outward from the one of the above boreholes to measure the shear wave profile of the surrounding soil. The diametric variation of the stone column with respect to depth was evaluated from the shear wave arrival times across the stone column, and shear wave velocities of crushed stone and surrounding soil. The volume calculated with these variational diameters is very close to the actual quantity of the stone filled.

  • PDF

Electrokinetic Remediation of Cobalt Contaminated Soil using Acetic Acid (초산을 이용한 동전기적 방법에 의한 코발트 오염토양 복원)

  • 김계남;김길정;손종식;배상민;오원진
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.1
    • /
    • pp.13-21
    • /
    • 2001
  • The characteristics of $Co^{2+}$ removal in the kaolinite column were analyzed by electrokinetic remediation. Ethanoic buffer was injected in the kaolinite column and $CH_3$COOH was continuously added to the cathode reservoir to restrain the pH increase. The pH of the cathode of the kaolinite column was 4.0 at first. Since it was controlled to be under 6.5 after 43.6 hours due to ethanoic buffer, precipitation of ${Co(OH)}_2$ was not formed in the column. Effluent rate increased with time and $Co^{2+}$ removal in the column at initial time was mainly controlled by ion migration. 13.1% of total $Co^{2+}$ in the column was removed after 10 hours, the 46.8% of total $Co^{2+}$ after 20.8 hours, and the 71.7% of total $Co^{2+}$ after 30.1 hours, the 94.6% of total $Co^{2+}$ after 43.6 hours, Meanwhile, the residual concentrations in the column calculated by the developed model were similar to experiment results.

  • PDF

A Study on the Reduction of Soil Particle Dissociation Rate by the Root of 'Salix Gracilistyla' (갯버들 근계의 토양 입자 해리 억제효과에 관한 연구)

  • Lee, Chun-Seok;Park, Myung-Ahn;Kang, Ho-Chul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.3
    • /
    • pp.69-78
    • /
    • 2003
  • The main purpose of this study was to verify the shore margin protection effect of the root system of Salix gracilistyla Miq. developed from direct sticking cuttings on wetland, focusing on the effect of the root system reducing soil particle dissociation rate in water. The soil dissociation rate was examined through slaking tests with cylindric pure soil column at maximum particle density and the same size column of root reinforced soil. The dry weight of remained soil was measured after 5, 10, 15, 30minutes and 1, 6, 12, 24, 48hours inundation. As results, the soil particles began to dissociate severely at 10 minutes and only 10% of soil particles were left after 25minutes inundation. The stable slope angle of pure soil was $36^{\circ}$after 24 hours. On the other hand, the columns of root reinforced soil were stable even after 24hours, being dissociated only 7.2% of soil particles. So, it was revealed that the root system was very effective materials protecting more than 80% of soil particle from dissociation in inundation.

An Analysis on Remediation of Soil Contaminted with Cobalt by Solvent Flushing

  • Kim, Gyenam;Kyungsuk Suh;Huijun Won;Joonbo Shim;Wonzin Oh
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.342-349
    • /
    • 2000
  • A soil whose texture is silt loam was collected for the study from an area around a nuclear facility in Korea. The equilibrium sorption coefficient between Co$^{2+}$in water and the soil was 1.51/kg, on the other hand, that between Co$^{2+}$ in EDTA and the soil was 0.21/kg. The values calculated by the developed nonequilibrium sorption code corresponded to the experimental values better than those calculated by the existing equilibrium sorption code. When an EDTA solution was used as a solvent to decontaminate Co$^{2+}$ in the soil column, the relative Co$^{2+}$ concentrations of the effluent were higher at 2~10 pore volumes than those of the case using water. The soil in the column was decontaminated by 95.5% of the total amount of Co$^{2+}$ after being flushed with EDTA solution of 20 pore volumes.e volumes.

  • PDF

The Purification Characteristics of Reactive Soil-Bentonite Landfill Liner (혼합반응 차수재의 오염정화특성)

  • 김학문
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.4
    • /
    • pp.398-403
    • /
    • 2003
  • The purpose of this paper is to investigate purification characteristic of soil-bentonite landfill liner and to develop a desirable liner system. In order to clarify the purification characteristics, high pressure column tests using soil-bentonite, reactive soil-bentonite and reactive bentomat were carried out in the presence of water and leachate. The test results indicated that the significant amount of NH$_3$-N, Pb and Cu was removed through the reactive soil-bentonite liner system.

  • PDF

Elution Patterns and Hydraulic Conductivity Depending on the Incorporated Organic Matter Contents in a Multi-Layered Soil Column (토양내 유기물 함량 변화에 따른 다층 토주의 수리전도도 및 용출 경향)

  • Chung, Doug Young
    • Korean Journal of Agricultural Science
    • /
    • v.27 no.2
    • /
    • pp.125-134
    • /
    • 2000
  • This observation was to investigate the influence of raw organic matter incorporated into soil at various rates on hydraulic conductivity and elution of solute throughout soil column. Generally the organic matter content in a practical agricultural field was approximately 3%. However, the application rate of organic matter in the field tends to rapidly increase in these days. Therefore, we raised the application rate of organic matter up to 10% in this investigation. From the experiment, we found that the hydraulic conductivities rapidly decreased with increasing rate of organic matter as well as rapid decrease in total volume of eluent during the same period. And electrical conductivities in the effluent significantly decreased after 2 pore volume, resulting in approaching to the criteria of saline soli. From this we could assume that the organic matter may influence the crop growth in the beginning. However excessive irrigation in the field may cause saturation of soil leading to reduction of soil. Therefore, there must be a management methods in application of organic matter with respect to soil water control.

  • PDF

Long-term Leaching Characteristics of Lead Contaminated Soils treated with Soluble Phosphate (액상인산염으로 처리된 납 오염토양 복원의 장기용출 특성)

  • Lee Eui-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.453-457
    • /
    • 2006
  • A long-term leaching column experiment was performed to evaluate the teachability of the stabilized lead-contaminated soil using soluble phosphate. The study shows that Pb in the leachate was little detected and the remaining $PO_4-P$ concentration kept below 0.1 mg/L due to the formation of geochemically stable lead phosphate minerals from the reactions of labile soil Pb forms with the added soluble phosphate salt. After the experiment, there was no Pb migration from the top to the bottom of the stabilized soil column. But the Pb concentrations of the 12 soil samples from the control column decreased with the increase of the soil depth.

  • PDF

토양 중 브롬화다이옥신류의 분석법 고찰

  • 김태승;신선경;이정희
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.413-417
    • /
    • 2003
  • The last few decades have seen drastic growth in the use of brominated flame retardants(BFRs). There is the problems of polybrominated dibenzo-p-dioxins(PBDDS) and polybrominated dibenzofurans(PBDFs) generation as by-products in combustion process of BFRs. PBDDs/PBDFs are highlighted the new pollutants of environmental contamination, recently. In this study, the 10 kinds of PBDDs/PBDFs standards were used to perform the experiments of recoveries. The analysis of PBDDs/PBDFs in soil environmental samples. was carried out. In silica gel column cleanup, PBDDs/PBDFs eluted until 80mL of n-hexane, and the recovery was obtained 73∼105%. In multi-layer silica gel column cleanup, the recovery was obtained 56∼125% with various elution solvents. In alumina clean process, the standard mixture(PBDES, PBDDs/PBDFs) eluted the first fraction of 2% dichloromethane with n-hexane in the range of 0∼100mL, PBDEs compounds eluted in the second fraction of 50% dichloromethane with n-hexane. In activated carbon column cleanup, the PBBEs eluted to the first fraction(n-hexane) and second fraction(toluene), but PBDDs/PBDFs only eluted to the second fraction. The analytical methods of PBDDs/PBDFs for soil was established based on the experimental results of the environmental samples.

  • PDF