• Title/Summary/Keyword: soil burial

Search Result 132, Processing Time 0.032 seconds

Experimental Assessment for the Effect of Burial Depth on the Formation of Underground Cavities and Ground Cave-ins by Damaged Sewer Pipes (하수관 손상으로 인한 지하공동 및 지반함몰 발생에 대한 하수관 매립심도 영향의 실험적 평가)

  • Kwak, Tae-Young;Chung, Choong-Ki;Kim, Joonyoung;Lee, Minho;Woo, Sang-Inn
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.37-49
    • /
    • 2019
  • In order to analyze the effect of burial depth on the generation of ground cavities and cave-ins, a series of model experiments with different height of model ground were performed. Digital images of the model ground were captured to evaluate the internal deformation of the model grounds by adopting the PIV (Particle Image Velocimetry) technique. Additionally, the vertical displacement at the surface, the size of the cavity, and the weight of the discharged soil were measured in each test. The results indicate that the model ground with low burial depth, which does not satisfy the criterion, was more vulnerable to ground cavities and cave-ins than the model ground with high burial depth.

Face stability analysis of large-diameter underwater shield tunnel in soft-hard uneven strata under fluid-solid coupling

  • Shanglong Zhang;Xuansheng Cheng;Xinhai Zhou;Yue Sun
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.145-157
    • /
    • 2023
  • This paper aims at investigating the face stability of large-diameter underwater shield tunnels considering seepage in soft-hard uneven strata. Using the kinematic approach of limit upper-bound analysis, the analytical solution of limit supporting pressure on the tunnel face considering seepage was obtained based on a logarithmic spiral collapsed body in uneven strata. The stability analysis method of the excavation face with different soft- and hard-stratum ratios was explored and validated. Moreover, the effects of water level and burial depth on tunnel face stability were discussed. The results show the effect of seepage on the excavation face stability can be accounted as the seepage force on the excavation face and the seepage force of pore water in instability body. When the thickness ratio of hard soil layer within the excavation face exceeds 1/6D, the interface of the soft and hard soil layer can be placed at tunnel axis during stability analysis. The reliability of the analytical solution of the limit supporting pressure is validated by numerical method and literature methods. The increase of water level causes the instability of upper soft soil layer firstly due to the higher seepage force. With the rise of burial depth, the horizontal displacement of the upper soft soil decreases and the limit supporting pressure changes little because of soil arching effect.

Biodegradability of Polylactic Acid Fabrics by Enzyme Hydrolysis and Soil Degradation

  • Lee, So Hee
    • Textile Coloration and Finishing
    • /
    • v.29 no.4
    • /
    • pp.181-194
    • /
    • 2017
  • The biodegradability of polylactic acid(PLA) fabrics was evaluated by two methods: enzyme and soil degradation. Three different enzymes were selected to evaluate. Degradation times were measured at optimal enzyme treatment conditions. Biodegradation by enzymatic hydrolysis was compared with soil degradation. As a result, biodegradation created cracks on the fiber surface, which led to fiber thickening and shortening. In addition, new peak was observed at $18.5^{\circ}$ by degradation. Moreover, cracks indicating biofragmentation were confirmed by enzyme and soil degradation. By enzyme and soil degradation, the weight loss of PLA fabrics was occurred, there through, the tensile strength decreased about 25% by enzyme hydrolysis when 21 days after, and 21.67% by soil degradation when 60 days after. Furthermore, the biodegradability of PLA fabrics by enzymatic and soil degradation was investigated and enzymatic degradation was found to be superior to soil degradation of PLA fabrics. Among the three enzymes evaluated for enzymatic degradation, alcalase was the most efficient enzymes. This study established the mechanism of biodegradation of PLA nonwovens, which might prove useful in the textile industry.

Influence of Burial Environments on Excavated Ceramics (매장환경이 출토 토기에 미치는 영향)

  • Jang, Sung-Yoon;Nam, Byeong-Jik;Park, Dae-Woo;Yu, Jae-Eun
    • Journal of Conservation Science
    • /
    • v.27 no.4
    • /
    • pp.441-450
    • /
    • 2011
  • This study investigated potential damages and conservation methods for the ceramics (without glaze) by examination of physical and chemical effects from the burial environments. For this study, pottery samples excavated from Daejeon Hakha, Asan Eumbong, Hwasung Sogeunsan and Kongju Haengbokdosi were examined with released ions and extraction through desalination. The result showed that the ion inflow into the ceramics was dependent upon the porosity and the absorption of ceramics. The high temperature fired ceramics (over $1,000^{\circ}C$) have low porosity and absorption, therefore almost no salt infiltration during the burial period. However, low temperature fired ceramics (under $800^{\circ}C$) have high porosity and absorption, and most of salts were removed during the desalination. The 40 to 60% of salts were removed in two days and 60 to 80% of slats were released in a week. Furthermore, fertilizer residues such as $K_2SO_4$, in soils were detected in the ceramcis. Also the characteristics of buried soil affected ion infiltration into ceramics. Ceramics buried in sandy soil had relatively less ion contents from buried environments than those in clayey soil. Therefore, low temperature fired ceramics could do not only cleaning but also desalination if it is necessary, and the period could be decided to the condition of ceramics.

Three-dimensional numerical parametric study of tunneling effects on existing pipelines

  • Shi, Jiangwei;Wang, Jinpu;Ji, Xiaojia;Liu, Huaqiang;Lu, Hu
    • Geomechanics and Engineering
    • /
    • v.30 no.4
    • /
    • pp.383-392
    • /
    • 2022
  • Although pipelines are composed of segmental tubes commonly connected by rubber gasket or push-in joints, current studies mainly simplified pipelines as continuous structures. Effects of joints on three-dimensional deformation mechanisms of existing pipelines due to tunnel excavation are not fully understood. By conducting three-dimensional numerical analyses, effects of pipeline burial depth, tunnel burial depth, volume loss, pipeline stiffness and joint stiffness on bending strain and joint rotation of existing pipelines are explored. By increasing pipeline burial depth or decreasing tunnel cover depth, tunneling-induced pipeline deformations are substantially increased. As tunnel volume loss varies from 0.5% to 3%, the maximum bending strains and joint rotation angles of discontinuous pipelines increase by 1.08 and 9.20 times, respectively. By increasing flexural stiffness of pipe segment, a dramatic increase in the maximum joint rotation angles is observed in discontinuous pipelines. Thus, the safety of existing discontinuous pipelines due to tunnel excavation is controlled by joint rotation rather than bending strain. By increasing joint stiffness ratio from 0.0 (i.e., completely flexible joints) to 1.0 (i.e., continuous pipelines), tunneling-induced maximum pipeline settlements decrease by 22.8%-34.7%. If a jointed pipeline is simplified as a continuous structure, tunneling-induced settlement is thus underestimated, but bending strain is grossly overestimated. Thus, joints should be directly simulated in the analysis of tunnel-soil-pipeline interaction.

Impact Characteristics of Subsea Pipeline Considering Seabed Properties and Burial Depth (해저지반 성질과 매설깊이 변화에 따른 해저파이프의 충돌 특성)

  • Shin, Mun-Beom;Seo, Young-kyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.219-226
    • /
    • 2017
  • In this study, the impact characteristics of subsea pipelines that were installed in various soil types and burial depths were evaluated by a numerical method. An impact scenario replicated a dropped ship anchor that fell vertically and impacted an installed subsea pipeline. In order to calculate the impact force through terminal velocity, FLUENT, a computational fluid dynamic program and MDM (Moving Deforming Mesh) technique were applied. Next, a dynamic finite element program, ANSYS Explicit Dynamics, was used for impact analysis between the anchor and pipeline (or, subsea if they were buried). Three soil types were considered: loose sand, dense sand and soft clay by applying the Mohr-coulomb model to the seabed. The buried depth was assumed to be 0 m, 1 m and 2 m. In conclusion, a subsea pipeline was the most stable when buried in dense sand at a depth of 2 m to prevent impact damage.

The Environmental Degradability of Starch-Polyethylene Composite Film (전분-폴리에틸렌 복합필름의 환경분해성)

  • Kim, Young-Gi;Park, Young-Hoon;Im, Seung-Soon
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.178-187
    • /
    • 1993
  • Degradation of the starch-polyethylene composite film by an activated sludge treatment and a soil burial test was examined. The treated films had deformed structures which were resulted from the removal of starch during the treatments. The added auto-oxidant caused the degradation of the polyethylene matrices and the crosslinking reactions after the oxidation of polyethylene chains as well. As a result of soil burial test, the degradation reaction of the composite film containing corn oil as an auto-oxidant was, however, prevalent : number- and weight-average molecular weight of polyethylene decreased, while the molecular weight distribution increased.

  • PDF

Biodegradabilities of Cotton Fabrics treated with Silicones (실리콘 처리한 면직물의 생분해성)

  • 김보형;박정희;임승순
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.8
    • /
    • pp.1048-1056
    • /
    • 2004
  • Hydrophilicities of finished cotton fabrics were evaluated in respect of moisture regain and wickability. Changes in internal structure were determined using X-ray diffraction and surface changes in degraded samples were observed through a microscopy. Activated sludge test, soil burial test and enzyme hydrolysis were employed to evaluate the biodegradabilities. In addition, correlation analysis was done between biodegradability and the factors affecting biodegradability in each evalution methods. It was shown that hydrophilicities of silicone finished specimens were lower than that of untreated cotton and decreased in a row of PDMS(polydimethyl siloxane : -CH$_3$)>AFS(amino functional siloxane ; -C$_3$H$_{6}$ NHC$_2$H$_4$NH$_2$)>MHPS(methylhydrogen polysiloxane : -H, Cat : (C$_{17}$ H$_{35}$ COO)$_2$Zn) Although, moisture regain of mercerized cotton was higher than those of the others, wickability was shown to be lower. It was represented that crystalinities of cotton fabrics decreased by the silicone treatment. In activated sludge test and soil burial test, biodegradabilities of silicone treated specimens were lower than that of untreated cotton, where specimens of higher biodegradability exhibited higher biodegradability except mercerized ones. The results from enzyme hydrolysis, however, showed somewhat different tendency in that biodegradability was more closely related with the crystallinities of fabrics. It can be thought that enzyme hydrolysis is carried out for short time, physical accessibility becomes important.

Biological Characteristics of Calystegia japonica (메꽃의 생물학적(生物學的) 특성(特性))

  • Chun, Jae-Chul
    • Korean Journal of Weed Science
    • /
    • v.4 no.2
    • /
    • pp.149-153
    • /
    • 1984
  • The growth of Calystegia japonica Choisy as affected by pH, drying, burial, soil moisture and light intensity was determined. Germination of C. japonica rhizome was not affected by pH's ranging from 4.8 to 8.7,while the greatest growth after germination was obtained at pH 5.7. Drying longer than 14 h at $35^{\circ}C$ brought about a significant reduction in percent survival and the subsequent growth of C. japonica. A significant decrease in growth of C. japonica occurred when the rhizome was buried at 0 ㎝ and deeper than 8 cm. The greatest growth was obtained when the soil moisture content reached 40 to 60% of saturated soil. Increasing percent available light resulted in decrease in the plant height, but increase in the root length and dry weight.

  • PDF