• Title/Summary/Keyword: soil behavior

Search Result 2,072, Processing Time 0.035 seconds

Uniformity Assessment of Soil Moisture Redistribution for Drip Irrigation (점적관개에 따른 토양수분 재분배 균일성 평가)

  • Choi, Soon-Kun;Choi, Jin-Yong;Nam, Won-Ho;Hur, Seung-Oh;Kim, Hak-Jin;Chung, Sun-Ok;Han, Kyung-Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.19-28
    • /
    • 2012
  • Greenhouse cultivation has been increasing for high quality and four season crop production in South Korea. For the cultivation in a greenhouse, maintaining adequate soil moisture at each crop growth stage is quite important for yield stability and quality while the behavior of moisture movement in the soil has complexity and adequate moisture conditions for crops are vary. Drip irrigation systems have been disseminated in the greenhouse cultivation due to advantages including irrigation convenience and efficiency without savvy consideration of the soil moisture redistribution. This study aims to evaluate soil moisture movement of drip irrigation according to the soil moisture uniformity assessment. Richards equation and finite difference scheme were adapted to simulate soil moisture behavior in soil. Soil container experiment was conducted and the model was validated using the data from the experiment. Two discharge rate (1 ${\ell}/hr$ and 2 ${\ell}/hr$) and three spaces between the emitters (10 cm, 20 cm, and 30 cm) were used for irrigation system evaluation. Christiansen uniformity coefficient was also calculated to assess soil moisture redistribution uniformity. The results would propose design guidelines for drip irrigation system installation in the greenhouse cultivation.

SSI effects on the redistribution of seismic forces in one-storey R/C buildings

  • Askouni, Paraskevi K.;Karabalis, Dimitris L.
    • Earthquakes and Structures
    • /
    • v.20 no.3
    • /
    • pp.261-278
    • /
    • 2021
  • In the current work, a series of seismic analyses of one-storey asymmetrical reinforced concrete (R/C) framed buildings is accomplished while the effect of soil deformability on the structural response is investigated. A comparison is performed between the simplified elastic behavior of R/C elements according to the structural regulations' instructions to the possible non-linear behavior of R/C elements under actual circumstances. The target of the time history analyses is the elucidation of the Soil-Structure Interaction (SSI) effect in the seismic behavior of common R/C structures by examining the possible elastic or elastoplastic behavior of R/C sections because of the redistribution of the internal forces by employing a realistic damage index. The conclusions acquired from the presented elastic and elastoplastic analyses supply practical guidelines towards the safer design of structures.

An Experimental Study on the Analysis of Behavior Characteristics of the NDB Soil Nailing System (NDB 쏘일네일링 시스템의 거동특성 평가에 관한 실험적 고찰)

  • 김홍택;정성필;박시삼;전경식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.521-528
    • /
    • 2003
  • In this study, a newly modified soil nailing technology called as the NDB(New Down and Board) soil nailing system is introduced. To improve the trafficability, workability, and economical efficiency, SMC(Sheet Molding Compound) board is adopted instead of using the concrete block facing. The SMC board has a distinct advantage of showing a fine view by directly coating with any kind of environmental photos. Composite material properties of the SMC board and cement grout are distinguished features of the NDB soil nailing system. In the present study, both laboratory tests(bending and punching failure tests) and field pull-out tests are carried out to analyze the behavior characteristics of the NDB soil nailing system, including the stress and strain distribution.

  • PDF

An Experimental Study on Behavior Characteristics of the Soil Nailed Wall with Effects of the Pretension Force (프리텐션 효과에 따른 쏘일네일링 벽체의 거동특성에 관한 실험적 고찰)

  • 김홍택;최영근;박시삼;김범석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.61-68
    • /
    • 2003
  • In this study, a newly modified soil nailing technology named as the pretension soil nailing system, is developed to reduce both facing displacements and ground surface settlements in top-down excavation process as well as to increase the global stability. Up to now, the pretension soil nailing system, has been investigated mainly focusing on an establishment of the design procedure. In the present study, laboratory model tests are carried out to investigate the failure mechanism and behavior characteristics of the pretension soil-nailed wall. Various results of model tests are also analyzed to provide a fundamental basis for the efficient design.

  • PDF

Analyses of Horizontal Behavior of Guardrail Posts Installed in Compacted Weathered Granite Soil (화강풍화토 지반에 타설된 가드레일 지주의 횡방향 거동 분석)

  • Lim, Yu-Jin;Hai, Nguyen Tien
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.41-48
    • /
    • 2005
  • A small scale impact apparatus, pressuremter and soil chamber were used to investigate horizontal behavior and bearing capacity of the steel guardrail post installed in compacted soil. A useful test and data reduction method for pressuremter was developed to evaluate soil parameters of surrounding soil and stability of the post. From the analyses of the PMT, horizontal bearing capacity of the post impacted by a boggie was 12.7% bigger than that of the post with static loading. The increased horizontal bearing capacity is due to generated inertia force that is dependent on the shape of failed soil wedge around the post. P-y curves were obtained from the pressuremeter test and were applied to a finite difference program which predicted a load-deflection and a bending moment contours along the post.

  • PDF

Experimental and numerical modeling of uplift behavior of rectangular plates in cohesionless soil

  • Niroumand, Hamed;Kassim, Khairul Anuar
    • Geomechanics and Engineering
    • /
    • v.6 no.4
    • /
    • pp.341-358
    • /
    • 2014
  • Uplift response of rectangular anchor plates has been investigated in physical model tests and numerical simulation using Plaxis. The behavior of rectangular plates during uplift test was studied by experimental data and finite element analyses in cohesionless soil. Validation of the analysis model was also carried out with 200 mm and 300 mm diameter of rectangular plates in sand. Agreement between the uplift responses from the physical model tests and finite element modeling using PLAXIS 2D, based on 200 mm and 300 mm computed maximum displacements were excellent for rectangular anchor plates. Numerical analysis using rectangular anchor plates was conducted based on hardening soil model (HSM). The research has showed that the finite element results gives higher than the experimental findings in dense and loose packing of cohesionless soil.

Comparison of the Spatial Variability of C- and L-Band Remotely Sensed Soil Moisture (원격측정 토양수분자료, (C-band 측정치 vs. L-band 측정치)의 공간변화도 비교)

  • Kim, Gwangseob;Lim, TaeKyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.705-708
    • /
    • 2004
  • The spatial variability of the L- and C- band large scale remotely sensed soil moisture data, obtained during tire Southern Great Plain 1999 (SGP'99), was characterized. The results demonstrate that soil moisture data using L-band show the break in statistical symmetry (multiscaling behavior) with the variation of scale of observation, which is similar to that of the soil property such as sand content. Also, soil moisture data using C-band show single scaling behavior with the variation of scale of observation, which Is similar to that of the vegetation condition.

  • PDF

Analysis on Long-Term Behavior of Reinforced Clayey Soil by Model Test (모형실험에 의한 보강 점성토체의 장기적 거동 분석(지반공학))

  • 이상호;김철영;장병욱
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.471-476
    • /
    • 2000
  • Long-term behavior of reinforced clayey soil by model tests were performed to investigate the effect of reinforcement during loads and under static loads. In order to determine proper contents by weight of monofilament polypropylene fiber and calcium carbonate, the drying shrinkage and compressive strength tests had been conducted before model tests. Model tests were run on a clayey soil mixed with or without reinforcement and test specimen in test apparatus was placed in air dry for 7days before load application. In the case of fiber reinforced soil, the horizontal strain was lower than others during loads because the presence of fibers increased the soil's resistance to deformation. All of reinforced clayey soil, horizontal strain decreased as the water content decrease under static loads.

  • PDF

Study on small resistance regions in post-liquefaction shear deformation based on soil's compressive properties

  • Jongkwan Kim;Jin-Tae Han;Mintaek Yoo
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.295-301
    • /
    • 2024
  • Understanding the post-liquefaction shear behavior is crucial for predicting and assessing the damage, such as lateral flow, caused by liquefaction. Most studies have focused on the behavior until liquefaction occurs. In this study, we performed undrained multi-stage tests on clean sand, sand-silt mixtures, and silty soils to investigate post-liquefaction shear strain based on soil compressibility. The results confirmed that it is necessary to consider the soil compressibility and the shape of soil particles to understand the post-liquefaction shear strain characteristics. Based on this, an index reflecting soil compressibility and particle shape was derived, and the results showed a high correlation with post-liquefaction small resistance characteristic regardless of soil type and fine particle content.

Analysis of Effective Stress Parameter on Partially Saturated Soil via Hydro-Mechanical Behaviors (부분포화토의 침투와 흙의 거동에 따른 유효응력 계수 분석)

  • Kim, Jae-Hong;Kim, You-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.117-126
    • /
    • 2011
  • Based on thermodynamics, the mathematical framework governing the hydro-mechanical behavior of partially saturated soil is derived by using balance equations, and the numerical analysis through implementation of various effective stress definitions is performed. Effective stress on partially saturated soil describes the soil strength which is presented by the relationship between water content and soil suction. For the estimation of hydro-mechanical behavior on partially saturated soil, effective stress parameter ${\chi}$ defined from various literatures is especially analyzed to understand the conditions of constitutive equations regarding residual saturation and displacement of soil. As a result, effective stress parameter ${\chi}$ has an influence on the variation of matric suction in soil with an external load and seepage. However it was found that the effect of each parameter ${\chi}$ varies with residual degree of saturation, and that of each parameter ${\chi}$ decreased with decrease in displacement of soil caused by an external load.